井下工作面过陷落柱技术分析

李 根(山西焦煤西山煤电西铭矿,山西 太原 030052)

摘 要: 当前我国很多煤矿已经逐渐进入到深部开采阶段,在深部开采过程中,各种类型的地质构造越来越多,给 采煤工作面的安全快速推进带来了较大的威胁、特别是遇到陷落柱时、带来的影响更大。本文以某工作面过陷落柱情况 作为研究对象,根据工作面情况,设计了过陷落柱方案,并重点分析了过陷落柱时关键技术要点,取得了较好的过陷落 柱开采效果。

关键词:工作面;过陷落柱技术;分析

陷落柱通常情况下是由于地下可溶性岩层在地下水强 烈腐蚀作用下形成的溶洞,在各种类型地质因素下,导致 上层岩层出现了塌陷,从而形成了筒状柱体。在采煤工作 面开采过程中, 遇到陷落柱时, 对工作面正常开采影响较 大, 不仅影响到工作面布置, 同时也带来了较为明显的煤 炭资源损失, 巷道掘进量也会随之增加。因此, 对采煤工 作面过陷落柱技术进行分析有着较为重要的意义。

1 工程概况

XX 综放工作面开采是煤矿 3# 煤层,工作面倾斜长度 为 200m, 煤层总厚度为 4.8m, 机采厚度为 2.4m, 放顶煤 厚度为 2.4m。在工作面回采前,选择使用坑透与钻探方式, 探测到在工作面前方存在陷落柱,位置在工作面开切眼前 方 446m-544m 之间, 走向影响的长度在 80m 左右, 倾斜 方向影响的长度在 50m 左右。

2 采煤工作面过陷落柱方案选择

现阶段国内煤矿在开采时遇到陷落柱时,通常情况需 要根据陷落柱所处的位置、形状大小、采煤方法等相关因 素,选择使用将工作面缩短或者选择其他位置开切眼的方 式来通过陷落柱。对本工作面遇到的陷落柱,本次设定了 两套方案,分别为:强行通过陷落柱;选择其他位置开切 眼,将陷落柱绕过去。

根据现场地质勘察发现, 若选择使用方案二, 需要较 多的巷道掘进量,技术难度虽然较小,但是带来的煤炭损 失量相对较大,工作面开采准备时间也更长,开采的成本 非常高,这与当前煤炭行业转型升级、体质增效发展是相 悖的。若选择方案一,不需要进行工作面的搬家,开掘巷 道数量也非常小,煤炭资源损失量也非常少,但是在工作 面过陷落柱时,可能有透水问题发生,也可能导致冒顶压 架等各种类型的安全隐患。但是,本次通过全面勘探分析 得到,本次工作遇到的陷落柱属于弱含水性陷落柱,陷落 柱的位置、范围等已经较为明确,工作面在通过时,涌水 量非常小。因此,综合上述分析,对于本工作面遇到的陷 落柱,可采取强行通过的方式通过。

3 采煤工作面过陷落柱关键技术要点

3.1 打震动炮

在本次工作面通过陷落柱时, 出现了构造矸石较硬的 情况,针对矸石较硬的问题,本次选择使用了打震动炮的 方式,炮眼根据陷落柱的赋存的情况进行布置。本次在顶 帮相对较为完整的位置,设计采用了"五花眼"的方式进 行布置,设计炮眼深度在 1.2m,间距在 0.7m 左右,炮眼 和煤壁之间的角度本次控制在 70°左右。在每次放炮时,

范围均控制在 10m 的范围内, 若出现了超过 10m 的问题, 则分析分次打眼,通过分次爆破的方式,可更好控制爆破 带来的负面影响,布置炮眼见图1所示。对于顶帮相对不 完整的位置,本次选择使用采煤机直接将矸石割掉。此外, 在本次放炮时,为了更好控制放炮带来的负面影响,在工 作面打设炮眼时,力求多打眼,少装药,更好控制松动圈 范围,降低大块矸石出现的概率。

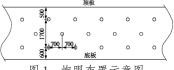


图 1 炮眼布置示意图

3.2 采煤机采高控制

在正常回采时,本次将采高控制在2.4m,在陷落柱的 两端位置,将采高降低到 1.6m 到 2.3m 左右,最大限度的 降低采煤机在陷落柱位置割掉矸石的厚度,在陷落柱的位 置以满足采煤机通过就可以。

3.3 工作面顶板控制

在本次工作面通过陷落柱时,对出现了顶板冒落的问 题,均在顶板岩层冒落稳定之后,通过在支架上方设置与 工作面垂直的板梁,然后在板梁上打设"井"字木垛的方 式, 实现支护接顶, 最大限度的控制顶板冒落的范围。在 顶梁打设时,技术人员需要拉超前架,将支架上的前探梁 伸出来, 实现对壁板的有效支护, 达到对顶板与两帮进行 保护的效果。

3.4 本次揭露陷落柱情况

从本次开采过程中,陷落柱揭露情况来看,本次在通 过陷落柱时,总体可分为三个阶段。

第一个阶段是在揭露陷落柱之前的煤体影响区域。在 采煤机机头推进到 436m 时,工作面开始进入到揭露陷落 柱之前的煤体影响区, 展现出来的主要特点是, 采煤机出 现了割底矸的问题,同时,很多区域的顶板也出现了破碎 的情况。煤体也相对破碎。在该区域支护时,需要将顶板 重点控制,同时对采高也需要做好重点控制,技术人员需 要将超前架及时拉出,实现对顶板的有效维护,本阶段开 采时,需要将采高控制在 2.0m-2.2m 左右。

第二阶段是陷落柱造成的破碎带影响区域。在采煤机 推进到 440m 时, 多数直接突然出现了揭露全断面矸石的 情况, 岩性表现出明显的杂乱, 对岩性进行分析, 得到工 作面揭露了陷落柱。在采煤机机头推进到 463m 时, 矸石 的颜色呈现出浅白色。

第三阶段是陷落柱通过之后的岩层影(下转第97页)

监控海缆水下受挤压状态和喷嘴是否在正常压力下工作; USBL 信标利用定位系统保证埋缆机行走路线满足海缆铺 设路由精度。经过计算,埋缆机两个滑橇着泥时,根据勾 股定理计算,喷射臂在打开角度为 40°时,埋缆机可开沟 深度为 3.8m,示意图如上。

本项目海底电缆设计埋深为 3.5m, 为防止因海床的不 平整引起埋缆机轻微摇倾,造成沟深不均匀,海试标准按 照沟深 3.8m 制定,预留 30cm 的余量。

2.2 海试成果验证

为保证海试地质环境与工程实际工况无限接近,项目 团队特别向海事部门及油田作业区申请在油田外围海域进 行海试,其水文环境和地质条件基本吻合。同时,邀请甲 方技术代表、油田作业区总监以及第三方机构见证整个海 试的全过程和海试结果,并出具相应的报告、埋缆机海试 证明、沟深结果证明。

海试期间,作业船每个操作步骤均按照施工方案中设计标准进行,按照方案中的铺缆速度移船前进,下放埋缆机至海床,保证双滑橇平稳着泥;开启埋缆机并下放喷射臂至40°位置,启动水下泵进行开沟并乳化、吸泥;期间,实时监测埋缆机水下姿态、喷射臂喷嘴出口压力、水下泵工作状态和声呐显示的沟型,验证开沟深度满足既定目标,即3.8m深要求;同时,整个海试连续进行约60h,充分验证了该埋缆机的连续作业能力满足铺设6.4km海缆要求,海试圆满完成。

(上接第95页)响区域。在工作面推进过程中原有的红土矸石胶结区域全部消失之后,出现了工作面揭露的岩性相对较为完整的岩石,通过分析后得知,属于陷落柱后影响区域。该区域内走向的长度在15m左右,陷落柱破碎带的范围出现了明显的减小,矸石也变的较为齐整。该区域属于陷落柱的边缘,顶板与煤层均出现了一定的下沉,随着工作面的推进,影响范围在逐渐减少。

4 过陷落柱时遇到的相关问题及应对措施

首先是过陷落柱时的工作面水管理。本次在通过陷落柱时,工作面前溜内出现了一定的积水,为了更好防止出现了积水范围扩大,影响到工作面安全性的问题。在开采时,做好了对工作面积水情况的严格监测,加大了排水措施的使用力度,在通过工作面时,虽然出现了工作面积水明显的问题,但是通过强有力的排水措施,取得了较好的排水效果。

其次强化工作面支护。在通过陷落柱时,出现了明显的陷落柱顶板支护难题,为了更好对工作面顶板进行支护,在本次开采之前,制定了完善的顶板支护方案,设定了较高的顶板支护安全系数。做好了对顶板两帮岩层、煤层出现较为严重破坏情况下,巷道整体的支护。从使用情况来看,整体的支护效果较好。

此外,为了更好推动工作面安全有序通过陷落柱。本次开采之前,全面强化了对工作面施工人员的培训与提升工作,将各个岗位人员结合岗位职能,应当注意的相关事项及操作技巧,全面讲授给操作人员,解决了先前过陷落

3 结束语

在预开沟后铺缆、边铺边埋和先铺缆后挖沟三种海底电缆埋深保护方法中,边铺边埋的方案最有利于进度和成本的控制。①此方案减少了船舶资源的投入,仅使用铺缆船一次即可完成铺设和挖沟工作,节约工期和成本;②边铺边埋的作业方式,开出的缆沟宽度较小,在埋缆机携带海底电缆通过后,沟型受挤压以及潮汐作用,会在短时间内完成自然回填,无需动用额外的船舶进行机械回填,节约成本;③此方案在完成铺设后,海缆已经进入缆沟底部,缆沟几乎同步完成回填,对海缆的安全起到强有力的保障。

但受制于常规埋缆机作业能力限制,海底电缆的超深埋设需要针对不同海域、作业区的地质条件,经过周密的地质钻孔取样和剪切力计算来针对性的升级改造埋缆机。在地质结构复杂的海域,钻孔密度还应相应增加。在海床上开沟,每增加 1m 的深度,对埋缆机性能和稳定性的考验都大大增加。通过实际工程项目的成功案例,结合本文的分析,边铺边埋的海底电缆深埋设施工技术方案是切实可行的。

参考文献:

- [1] 李士涛. 论海缆超深敷埋的可操作 [J]. 中国造船,2016.11 (Vol.57 增刊 1):206-209.
- [2] 崔瑜科. 大采深高承压矿井水文地质条件及防治水技术 [J]. 机械管理开发,2016,31(09):124-126.

柱时,由于人员因素导致的各种类型的事故发生,更为顺利的通过工作面陷落柱。

5 结束语

综上分析,在采煤工作面推进过程中遇到陷落柱时,不同类型的陷落柱需要采取不同的过陷落柱技术,需要充分结合工作面实际地质情况,设计针对性的方案,虽然当前很多煤矿在过陷落柱时,多数情况下,可取得较好的效果,但在很多方面还有着较大的不足。因此,这就需要煤企充分认识到陷落柱通过时的关键技术要点,切实采取针对性的措施,全面提升工作面过陷落柱的实际效果。

参考文献:

- [1] 郝兵元,张玉江,戚庭野,冯国瑞,白锦文,章敏,康立勋.综采面过陷落柱采动应力与柱体应力相互影响模拟研究[]].采矿与安全工程学报,2015,32(02):192-198.
- [2] 张云峰. 超前预注浆技术在工作面过陷落柱技术探析与实践[J]. 煤矿现代化,2019(06):192-194.
- [3] 郝瑞. 兴裕煤业 15107 工作面过陷落柱关键技术应用分析 []]. 矿业装备 ,2020(04):70-71.
- [4] 朱晔. 大采高工作面过陷落柱回采工艺及支架适应性研究 [J]. 中国煤炭,2016,42(06):58-62.

作者简介:

李根(1997-),男,山西临汾霍州人,2019年毕业于太原理工大学矿物加工工程专业,本科,主要从事煤矿生产工作。