某厂超高压蒸汽管道承插焊口断裂原因分析及应对措施

周海斌 (中天合创能源有限责任公司化工分公司,内蒙古 鄂尔多斯 232000)

摘 要: 文章介绍了某企业超高压蒸汽管道上 DN40 的 P91 材质支管在开阀过程中,承插焊焊缝开裂的故障情 况及综合原因分析、得出了其存在焊接冷裂纹的结论。针对其所反映出的焊接问题、提出了焊接控制、热处理和 检验等应对措施。

关键词: P91 管道;承插焊;焊口开裂;冷裂纹

1 背景

某企业超高压蒸汽管道支管上 DN40 旁路阀在开阀 过程中,支管与支管台焊口处发生断裂(图1)。断裂部 位位于承插焊的角焊缝上,该段支管为主管道预热使用, 断裂部位已带压,但为首次投用。断裂部位详细参数如 下,介质:超高压蒸汽;工作压力:9.3MPa;工作温 度:535℃;支管台材质:F91;支管规格:DN40mm× 6.8mm; 支管台规格: DN200mm × DN40mm。

支管材质为 P91 钢, 该钢是一种改进型的 9Cr-1Mo 钢,由美国橡树岭国家实验室和美国燃烧公司研究开发。 它是一种在9Cr-1Mo钢基础上加入V、Nb、N、Ti、Al 等合金元素的改进型新钢种,具有良好抗高温氧化和抗 蠕变性能,且热强性好,能有效减轻结构自重。但由于 P91 钢属马氏体钢,有一定冷裂倾向和接头脆化倾向。

图1 支管和支管台承插焊口断裂情况

2 原因分析

- 2.1 宏观检查
- 2.1.1 外观检查

对样品断裂部位角焊缝的4个方位进行观察,断口 基本沿角焊缝开裂,出现脆性断裂特征。在角焊缝上有 一处裂纹, 270°方位的受弧处因焊条堆积过高而形成 一个焊瘤,焊缝外观成型不理想,如图2所示。

图 2 断裂部位宏观形貌

2.1.2 断口检查

图 3 断口宏观形貌(图中黄线圈出区域为原始裂纹) 断口相对较平,从断口表面颜色差异可以将断口分 为两个区域,一个区域为靠近内壁为原始端面区,其他 断口区域则为最后失稳断裂区。从断口形貌特征及断口 表面呈放射纹路的走向也可说明断裂是在内壁启裂向外 壁扩展的。由此说明在最后断裂前焊缝中已经存在始于 内壁的裂纹。见图 3 所示。

2.1.3 断口剖面检查

分别对断裂角焊缝一周的4个方位轴向剖开进行剖 面检查, 经化学试剂侵蚀后剖面焊接接头的宏观形貌见 图 4。由图可见开裂起始于角焊缝根部应力集中部位, 裂纹沿焊缝金属扩展。

图 4 断口焊缝剖面后的宏观形貌

(图中黄圈内可见角焊缝根部应力集中部位)

2.2 化学成分分析

分别对管子母材、管台母材和相连的角焊缝取样进 行化学成分分析,分析结果显示支管管子与支管台母材 和角焊缝的化学成分均满足相关标准的要求,见表1。

2.3 硬度测试

分别对开裂角焊缝一周的4个方向轴向剖面试样进 行维氏硬度测试,测试位置见图 5,测试结果见表 2。由 测试结果显示,开裂焊缝的焊缝金属和热影响区硬度异 常,分别高达 435.8HV~552.1HV 和 379.8HV~486.8HV, 远高于 P91 材质焊缝硬度 197HV~252HV 的要求。管子 和管台母材硬度明显低于焊缝金属和热影响区,为别为 213.6HV~240.2HV 和 233.6HV~240.5HV, 属基本正常状 态。

图 5 硬度测点位置示意图

2.4 金相分析

图 6.1 焊接接头 1# 试样金相组织

图 6.2 焊接接头 2# 试样金相组织 对角焊缝及两侧母材(管子与管台)用显微镜进行

- 设备运维 | Equipment operation and maintenance

金相分析,分析见图 4,分析结果见图 6.1-6.2。分析结 果表明,焊缝金属的金相组织为马氏体,热影响区的金 相组织也主要为马氏体,管子与管台母材的金相组织均 为贝氏体。

2.5 断口分析

2.5.1 宏观断口形貌分析

从管台侧断口上截取断口试样,截取部分及断口的 宏观形貌见图 7。断口1相对较平,断口2有较多的台 阶,断口启裂部位均位于管台内壁侧焊缝边缘处。

图 7 断口截取部位宏观相貌

2.5.2 微观断口

图 8 断口 1 微观形貌

图9 断口2微观形貌

分别对断口1和断口2进行微观分析,分析部位见 图 8a 和 9a,分析结果件图 8c 和 9c。断口1:靠近管台 焊缝内壁区域低倍形貌见图 8b,内壁边缘有一深度约 1.3mm的宽带。在宽带区域内的腐蚀相对严重(图 8c 中1-1、1-2、2和3),表明在高温下停留时间较长, 很难观察到真实形貌,为原始裂纹端面。其余部位可观 察到以解离断裂为主。断口2:内壁边缘侧低倍观察多 个原始裂纹端面(图 9b上箭头所指处),高倍下于断 口1基本相同,靠近内壁腐蚀严重,靠近外壁主要为解 离断面。

2.6 X 射线能谱分析

分别对断口1和断口2进行能谱分析,分析部位见图 10,分析结果见表3分析结果表明:断口1内壁边缘处的0含量为33.09%~36.87%,二分之一厚度处为

27.72%~27.89%; 断口 2 内壁边缘处的 0 含量为 32.17%~ 37.72%, 二分之一处厚度为 14.25%~16.30%。进一步说 明断口表面氧化程度为内壁边缘(焊趾部位)较高, 二 分之一厚度处已明显减少。

图 11 X 射线能谱分析具体部位及谱图

2.7 断裂力学分析

2.7.1 无裂纹支管有限元分析

采用 ABAQUS 软件, 针对支管台(外径 56mm、厚度 14.8mm、长度 50mm)和支管(外径 40mm、厚度 6.8mm、 长度 400mm)建立有限元模型,支管台底面固定,支管 顶面通过耦合方式施加弯曲载荷,有限元模型与分析结 果(图 12)。

图 12 无裂纹支管有限元分析

2.7.2 有裂纹支管有限元分析

在 ABAQUS 有限元分析的基础上,利用 ZENCRACK 软件,在支管台与支管间的承插焊缝处引入偏心圆形裂 纹,并开展断裂力学分析(图 13)。

图 14 偏心圆形裂纹前缘的应力强度因子分布情况 当外加弯曲载荷为 2.303kN 时(在人工开阀施加的 弯曲载荷范围内),裂纹最深部位尖端(0°)应力强 度因子 K₁为 50MPam^{1/2},达到材料估算的断裂韧性 K_{IC} 值, 支管台和支管连接角焊缝将发生脆性断裂。偏心圆形裂

180

纹前缘的应力强度因子分布情况如图 14 所示。

3 断裂原因的判定

3.1 主要分析结果

①外观检查结果表明,断裂部位未见塑性变形,呈 典型脆断特征。裂纹由角焊缝根部启裂沿焊缝金属向 外壁扩展;②管子、管台和角焊缝金属的化学成分均 满足相关标准的要求;③失效部位4个方位的角焊缝及 热影响区硬度很高,不满足硬度要求,管子与管台母材 的硬度正常;④金相分析结果表明,焊缝金属为马氏体 组织,母材金相组织为正常的贝氏体;⑤断口启裂部 位为焊缝内壁边缘,裂纹由内向外扩展,断口主要为脆 性解离断裂;⑥能谱分析结果表明,焊缝内部启裂部位 (焊趾部位)O含量较高,二分之一厚度部位O含量呈 下降趋势。说明焊趾部位的冷裂纹在下停留时间较长; ⑦当外加弯曲载荷为2.303kN时,裂纹最深部位尖端应 力强度因子 K₁为50MPzm^{1/2}(达到材料估算的断裂韧性 K_{IC}),支管台和支管连接角焊缝将发生脆性断裂。 3.2 讨论

理化分析结果表明:开裂焊缝硬度高,出现马氏体 组织,断口为脆性解离断裂特征,裂纹从内壁启裂向 外壁扩展,启裂部位存在原始裂纹。T91/P91 是在 9Cr-1Mo 的基础上将 C 增 V、Nb 等元素后,所形成的低碳 多元合金马氏体耐热钢。由于合金元素含量较高,因此 淬透性非常强,对焊接冷裂纹极为敏感。以往的实验室 研究及现场工程经验表明,在焊接预热温度低于 200℃ 的情况下,焊缝出现冷裂纹的概率几乎为 100%,预热 温度达到 200~250℃即基本可避免冷裂纹的出现。而质 量监督检验大纲中也规定,对于 P91 材料进行焊接时, 要进行 200~250℃ /15~30min 预热和 730~760℃焊后热处 理,热处理后的硬度控制值为 190~250HB。但从解剖分 析结果来看,开裂焊缝硬度高达 418HB(435.8HV)以上, 焊缝金属金相组织为马氏体,且启裂部位存在原始焊接 冷裂纹,表明该处焊缝在实际焊接时没有进行严格焊前 预热和焊后热处理,导致焊缝不但存在冷裂纹,且韧性 非常差。超高压蒸汽主管道投用距该支管断裂发生时已 半年,投用时该支管即已带压。在内压和振动、弯曲、 热应力等管系应力作用下,焊缝根部(凸台内壁焊趾部 位)的冷裂纹不断扩展,最终在本次开阀施加的外力共 同作用下发生失稳扩展造成断裂。

3.3 结论

超高压蒸汽管道支管承插焊焊缝根部存在冷裂纹。 在主管道运行过程中裂纹有扩展迹象,最终在开阀施加 外力作用下裂纹发生失稳扩展造成断裂。

4 应对措施

4.1 焊接措施

高,出现马氏体
①焊前清理是在焊接前,需清理坡口两侧各 20mm
范围内的油、水、铁锈等杂质; ②焊条烘烤是焊条使用
范围内的油、水、铁锈等杂质; ②焊条烘烤是焊条使用
前需进行 350℃烘干 2h,并在 100℃保温条件下使用,
前需进行 350℃烘干 2h,并在 100℃保温条件下使用,
随取随用; ③组对定位焊应在坡口较深部位,不少于 2
个固定点,定位焊焊缝长 10~20mm。定位焊的引弧点
口免焊接时形成未熔合缺陷,同时熄弧处要饱满,以免
形成收弧裂纹。定位焊后的管子不得作为受力点进行装
文管及支管台化学成分分析

测试位置	分析结果 (wt%)											
	С	Si	Mn	Р	S	Cr	Mo	Ni	V	Ν	Al	Nb
管子	0.101	0.279	0.454	0.016	0.005	8.83	0.91	0.208	0.202	0.030	0.0010	0.088
管台	0.101	0.334	0.498	0.019	0.006	8.85	0.89	0.322	0.186	0.030	0.014	0.084
焊缝	0.115	0.214	0.860	0.015	0.007	9.87	0.99	0.54	0.269	0.037	0.007	0.056
ASTMA 335 P91	0.08~0.12	0.20~0.50	0.30~0.60	≤ 0.020	≤ 0.010	8.00~9.50	0.85~1.05	≤ 0.40	0.18~0.25	0.030~0.070	≤ 0.02	0.06~0.10
ASTMA 182 F91	0.08~0.12	0.20~0.50	0.30~0.60	≤ 0.020	≤ 0.010	8.00~9.50	0.85~1.05	≤ 0.40	0.18~0.25	0.030~0.070	≤ 0.04	0.06~0.10
AWS A5.5 E9015-B9	0.08~0.13	≤ 0.30	≤ 1.20	≤ 0.010	≤ 0.010	8.00~10.50	0.85~1.20	≤ 0.80	0.15~0.30	0.02~0.10	≤ 0.04	0.02~0.10

表2 硬度测试结果

测试	部位	硬度值 /HV						
断口附近焊缝		热影响区	母材					
1#	接管侧	471.7/444.0/453.7	399.8/430.0/420.6	217.6/216.2/218.5				
	管台侧	456.9/508.7/486.6	472.9/483.4/486.8	235.9/236.7/239.4				
2#	接管侧	463.5/456.2/451.7	436.3/423.8/426.3	222.9/213.6/222.4				
	管台侧	462.1/461.0/485.1	461.0/455.7/445.1	235.4/237.3/239.5				
2#	接管侧	552.1/517.1/504.5	489.1/485.6/484.5	240.2/235.4/236.4				
5#	管台侧	456.2/460.0/453.7	379.8/450.0/451.5	235.4/233.6/240.5				
4#	接管侧	453.2/457.1/441.8	441.2/447.3/440.5	219.5/217.1/223.4				
	管台侧	440.5/435.8/443.5	449.9/450.8/434.8	235.2/238.7/237.0				

表 3 断口表面能谱主要元素分析结果

分析部位		主要成分分析结果 (wt%)										
		С	0	Si	Na	S	Р	Cr	Mn	Ni	Fe	
断口1	"+1"	谱图 1	4.77	33.09	/	/	/	/	1.67	/	/	60.46
	"+2"	谱图 1	5.82	22.89	0.44	/	/	/	6.66	0.50	/	63.69
断口2	"+3"	谱图 1	11.17	37.72	1.14	1.38	1.12	0.81	5.29	/	/	41.37
	"+4"	谱图 1	3.56	14.25	/	/	0.36	/	9.46	0.70	0.67	71.00

至 200~250℃,并保证 30min 以上;⑤层间清理是由于 E9015-B9 焊条的脱渣性能较差,每层焊道必须清理干 净,尤其注意清理接头及焊道两侧;出现收弧裂纹时必 须及时清除后,方可再次施焊,并注意防止夹渣等缺陷 的产生;⑥焊接时间:对于每一个接头,必须先整圈完 成打底焊后,再填充、盖面焊接,不允许一边还未完成 打底焊,就在另一边开始填充焊接,甚至盖面焊接,要 对称施焊。焊接过程不得中断,若由于特殊原因需中断 焊接,必须保证 200~250℃保温 2h 后,再缓冷;重新焊 接前还需预热至 200~250℃,并保温 30min 以上;⑦焊 道及外观要求:焊接时,每层焊接的填充厚度不得超过 4mm,摆动或不摆动,摆动幅度不超过焊芯直径的 3 倍; 最后一道焊接应是绕着管子的一道小焊缝,使焊缝表面 与管子过渡圆滑,消除管子侧咬边。

4.2 焊接注意事项

①焊前必须检查温控系统是否正常工作,确保预热和层间温度满足焊接工艺规定;②焊接时从5点钟位置和7点钟位置应交错引弧,熄弧时,应在1点钟位置和11点钟位置交错熄弧。同时,在坡口最深处焊条要交错施焊,以此可增加坡口最深处的金属填充量,从而避免了焊接应力集中;③焊缝层间处理,施焊时应使焊缝平整并充分熔合,最后一层绕着管子焊一条小焊缝,使焊缝表面与管子过渡圆滑,焊缝美观,以消除管子侧咬边缺陷;④引弧、熄弧处理,焊接时错开所有的引弧点和

熄弧点,熄弧时尽量在管台侧,以便修磨,并及时用砂 轮机去除所有可见缺陷;打磨引弧处和熄弧处,以确保 焊接接头处平滑过渡;盖面焊后,须磨去所有熄弧点, 避免收弧裂纹产生。

4.3 热处理

①后热处理即在焊接完成后需立即进行后热处理, 保温温度为 300~350℃,保温 2h 后,断电随炉冷却;② 焊后热处理:焊后热处理方式是高温回火,加热温度: (750±10)℃,保温 5min/mm;热处理过程升降温度: 小于 150℃/h,且不少于 3h,低于 300℃,断电随炉冷 却。其目的是消除焊接应力,改善焊缝及热影响区金属 组织,获得稳定的回火马氏体组织,使焊缝中的扩散氢 尽快逸出,避免扩散氢积聚,防止氢致裂纹的产生。 焊后热处理前需将焊缝缓慢冷却至 100~120℃,并保持 1~2h,是为了让奥氏体充分转变为马氏体,然后再进行 高温回火得到回火马氏体,如果没有这一冷却过程,焊 完直接进行高温回火处理,就会使没有转变为马氏体的 奥氏体的高温回火后转变为脆硬的马氏体,而不能使其 转变为力学性能良好的回火马氏体。

4.4 检验

①经外观检查,焊缝无表面裂纹、咬边、气孔等缺陷,焊缝成形美观;②热处理完成后48h后,按照ASME标准要求对所有焊缝进行100%MT检查,结果须合格。

(上接第128页)

校准曲线的剩余标准差:

 $S_{R} = \sqrt{\frac{\sum_{j=1}^{n} [y_{j} - (a+bc_{j})]^{2}}{n-2}} = 0.0035$ 校准曲线的标准不确定度:

$$u(c_0) = \frac{s_R}{b} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(c_0 - \overline{c})^2}{\sum_{i=1}^{n} (c_i - \overline{c})^2}} = 0.0024$$

式中: S_{R} -标准曲线的剩余标准差; b-标准曲线的 斜率; a-标准曲线的截距; x_i -标准溶液中待测物的质 量; n-曲线上浓度的总点数; p-样品平行测量的次数; c_0 -被测物质的样品溶液钼含量; \overline{C} -不同校准曲线溶 液的平均值; y_i -曲线上各点的吸光度; i-下标,指第 几个校准溶液; j-下标,指获得校准曲线的测量次数。

 u_{rel} (c_0) =0.0058

5.2.9 B 类相对合成标准不确定度分量 u_{Brel}(ω)

通过公式可计算钼含量 B 类相对合成标准不确定度 分量:

u_{Brel}(ω)

- $= \sqrt{(u_{rel}(m))^2 + (u_{rel}(V_{500}))^2 + (u_{rel}(V_{100}))^2 + (u_{rel}(V_{1.00 \text{ k}}))^2 + (u_{rel}(A))^2}$ = 0.0091
- 5.3 合成不确定度

合成标准不确定度,按公式计算:

扩展不确定度:

U (ω) =2 × 0.38%=0.76%

6 分析与讨论

5.

本研究通过实验和计算分析,确定了钼钒铝合金中 钼含量检测方法的不确定度。主要的两个不确定度分量 是标准溶液和校正曲线拟合引入的不确定度。为提高实 验的精确度,降低不确定度,采取以下方法:①选择有 资质的标准溶液机构,使用已检定/校准的玻璃容器; ②使用灵敏度高,稳定性好的仪器;③适当增加标准曲 线的点数,降低校准曲线拟合引入的不确定度。

参考文献:

- [1] 陶美娟,梅坛.材料化学分析使用手册[M].北京:机 械工业出版社,2016.
- [2] CNAS-CL006:2018, 化学分析中不确定度的评估指南 [S]. 北京: 中国合格评定国家认可委员会, 2018.