氧化法环己酮生产中节能工艺优化浅析

李 圭 (湖南百利工程科技股份有限公司,湖南 岳阳 414007)

摘 要:介绍氧化法环己酮装置生产过程中采用的节能工艺,对比采用节能工艺前后的蒸汽和循环水消耗,分析其经济效益。

关键词:节能;换热;热耦合;环己酮

环己酮是化工生产中的一种重要的化工原料,主要作为己内酰胺和己二酸生产的原料¹¹,环己烯水合法和环己烷氧化法是现国内生产环己酮的主要生产工艺,环己烷氧化法生产环己酮工艺是以环己烷为原料,经热交换、氧化、分解、废碱分离和蒸发、环己烷精馏、皂化、醇酮精制和醇脱氢等工序而得到产品环己酮。在环己酮的生产中,主要的能耗为蒸汽、循环水、冷冻水和电等¹²,本文主要对氧化法环己酮生产中采用的轻塔、酮塔热耦合技术;醇脱氢物料换热技术进行研究、改造,降低环己酮装置的蒸汽和循环水的用量。

1 氧化法环己酮装置换热新技术

1.1 轻塔、酮塔热耦合技术

氧化法环己酮装置醇酮精制工序采用先脱轻、后脱重的精馏流程,利用精馏方法将送来的粗醇酮精制成精酮及精醇。本流程主要由轻塔、轻二塔、酮塔和醇塔塔系组成,为增加组份间的相对挥发度及降低操作温度,轻塔和轻二塔操作压力控制在50kPa.A,酮塔及醇酮均在高真空(5kPa.A)下操作。在醇酮精制工序中,蒸汽、循环水、冷冻水和电是其主要的能耗。

在某环己酮装置醇酮精制工序中,轻塔塔顶气相温度约 130° 、采用循环水冷却至 80° 、酮塔塔釜温度约 97° 、采用 0.5MPa.G 低压蒸汽加热,蒸汽消耗约 9.2t/h,存在严重的热能浪费现象。

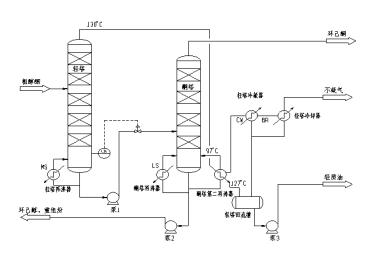


图 1 轻塔、酮塔热耦合技术工艺流程图

为回收环己酮装置醇酮精制工序轻塔顶部气相热量,新增酮塔第二再沸器,利用轻塔顶部气相料与酮塔塔釜料换热,进行热量回收。经过酮塔第二再沸器换热

后的轻塔冷凝液进入轻塔回流槽后再由泵输送出去。采用该轻塔、酮塔热耦合技术既可以节省循环水的用量,也能降低酮塔的蒸汽消耗量。通过计算,该方案酮塔第二再沸器热负荷为4732kW,能够给酮塔节省蒸汽约5.2t/h,轻塔冷凝器减少循环水用量296t/h。轻塔、酮塔热耦合技术工艺流程图见图1。

1.2 醇脱氢物料换热技术

氧化法环己酮生产醇脱氢工序中,环己醇脱氢的反应温度约 220~260℃,原生产工艺是醇塔塔顶冷凝的79℃环己醇经醇脱氢进料预热器与醇脱氢换热器来的反应产物进行换热,温度升至 132℃,进入醇脱氢蒸发器,用高压蒸汽加热至 173℃,再进入醇脱氢分离器进行汽液分离,气相进入醇脱氢换热器与脱氢反应产物换热,温度升至 244℃后进入环己醇脱氢反应器。反应产物经醇脱氢换热器与进料换热,温度降至 192℃后,再经循环水和冷冻水冷却。

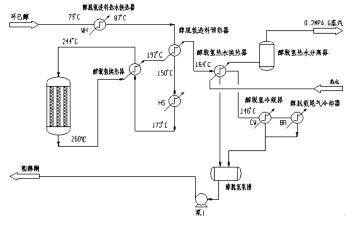


图 2 醇脱氢物料换热技术工艺流程图

为逐级利用醇脱氢反应器出口粗醇酮物料的热量,在某环己酮装置中,新增两台换热器: 醇脱氢进料热水换热器和醇脱氢热水换热器,79℃环己醇经醇脱氢进料热水换热器与装置内的副产热水换热, 温度升至 87℃,进入醇脱氢进料预热器与醇脱氢换热器出口 192℃的反应产物换热,升温至 150℃,再经醇脱氢蒸发器和醇脱氢换热器升温至 244℃后进入环己醇脱氢反应器。而醇脱氢进料预热器出口的 164℃反应产物再由醇脱氢热水换热器与 131℃的热水换热得到 0.2MPa.G 的蒸汽。经计算醇脱氢进料热水换热器的热负荷为 372kW,醇脱氢热水换热器获得 0.2MPa.G 的蒸汽。经计算醇脱氢进料热水换热器的热负荷为 372kW,醇脱氢热水换热器获得 0.2MPa.G 的蒸汽约 2.2t/h。醇脱氢物料换

热技术工艺流程图见图 2。

2 经济分析

2.1 投资成本

氧化法环己酮装置采用轻塔、酮塔热耦合技术和醇 脱氢物料换热技术工艺,在原工艺上改动小,只需增加 少量设备和相应的管道阀门、自控系统。投资详见表 1。

表 1 新增设备、管道阀门、自控系统投资估算表

序号	项目	规格及型号	数量	材质	含税价格 (万元)
1	酮塔第 二再沸器	Φ2000×3000	1	Q245R	47.8
2	醇脱氢进料 热水换热器	Φ700×3000	1	Q245R	7.7
3	醇脱氢热水 换热器	Φ1000×4500	1	Q245R	13.6
4	醇脱氢热水 分离器	Ф900×3200	1	Q245R	4.5
5	管道阀门、 自控系统				36.8
6	其他费用				15
7	合计费用				125.4

2.2 节能效益

以 15 万 t/a 氧化法环己酮装置为例,采用轻塔、酮塔热耦合技术和醇脱氢物料换热技术与传统工艺,通过Aspen Plus 模拟和 Exchanger Design and Rating 计算,蒸汽、循环水消耗和副产蒸汽对比及能源折算见表 2 和表 3。

表 2 蒸汽、循环水消耗和副产蒸汽对比表

项目	无轻塔、 酮塔热耦 合技术时	有轻塔、酮塔热耦 合技术时	无醇脱氢 物料换热 技术时	有醇脱氢 物料换热 技术时		
0.5MPa.G 蒸 汽消耗 t/h	9.2	4	_	_		
循环水消耗 t/h	474	178	474	243		
副产 0.2MPa. G 蒸汽 t/h	_	_	0	-2.2		

表 3 蒸汽、循环水消耗减少和副产蒸汽能源折算表

项目	轻塔酮塔 热耦合技术	醇脱氢物 料换热技术
----	---------------	---------------

蒸汽规格	0.5MPa.G 低压蒸汽	0.2MPa.G 低低压蒸汽
蒸汽折标煤	0.0929t 蒸汽 /t 标煤	0.07857t 蒸汽 /t 标煤
节约蒸汽	5.2t/h	2.2t/h
蒸汽年能源折算值	3478t 标煤	1244t 标煤
循环水折标煤	0.000143t 循环水 /t 标煤	0.000143t 循环水 /t 标煤
节约循环水	296t/h	231t/h
循环水年 能源折算值	305t 标煤	237t 标煤
合计节约 能源折算值	3792t 标煤	1601t 标煤

注:以年操作7200h 计算。

节约蒸汽: 0.5MPa.G 低压蒸汽按 165 元 /t 计算, 年 节约成本 165×5.2×7200=617.8 万元;

节约循环水:循环水按 0.2 元 /t 计算,年节约成本 0.2×(296+231)×7200=75.9 万元;

副产 0.2MPa.G 低低压蒸汽: 0.2MPa.G 低低压蒸汽 按 140 元 /t 计算, 年收益 140×2.2×7200=221.8 万元。

根据以上分析,氧化法环己酮生产中采用上述两种新换热技术,投资成本仅需 125.4 万元,每年收益能达 617.8+75.9+221.8=915.5 万元。节能经济效益显著。

3 结论

氧化法环己酮装置利用轻塔、酮塔热耦合技术和醇脱氢物料换热技术,不管是新建装置或装置改造,上述方案投资成本低,安全可靠,易于实施。不仅能减少轻塔和醇脱氢工序循环水的用量、减少酮塔再沸器蒸汽用量;还能副产 0.2MPa.G 低低压蒸汽。达到降低能耗,节约成本,节能减排的要求,具有显著的经济效益和环境效益。

参考文献:

- [1] 章宇斌. 环己酮装置 KA 油分离工艺节能优化模拟 [J]. 化学工程与装备,2020(5):24-25.
- [2] 谭红彩. 环己酮装置精馏工序节能降耗浅析 [J]. 合成纤维,2013,42(12):37-42.

作者简介:

李圭(1985-),性别:女,民族:汉,籍贯:湖南岳阳人,现有职称:中级工程师,研究方向:化工系统和化工安装工程设计。