天然气开采集输节能技术分析

陈 涛(甘肃中石油昆仑燃气公司有限公司兰州新区分公司,甘肃 兰州 730000)

摘 要:相比传统的煤炭、石油等能源,天然气能源在使用中对环境污染小,目前已经成为了我国的主流能源之一。但在天然气采输过程中会产生相应的能源损耗,如何提高天然气开采集输效率和效能,是当前行业重点关注的问题。基于此,本文首先对天然气采输过程进行分析,分析天然气采输能耗评价指标,进而探究天然气开采集输节能技术。

关键词: 天然气; 开采集输; 节能技术; 损耗

天然气作为一种气态化石燃料,主要存储在天然 气田、油田当中,燃烧后会生成水、二氧化碳,具有 热值高、污染小、使用安全等优势,近些年城市生产、 生活使用天然气的总量逐年增加。但在天然气采输过 程中会产生大量的能源损耗,能源大量损耗与我国提 出的节能降耗、可持续发展策略相违背,不利于天然 气开采企业可持续发展。这就需要在天然气采输过程 中,采用相关的节能技术降低天然气采输损耗,提出 更加科学、合理的管理模式,提升天然气采输的综合 效益。

1 天然气采输过程工艺分析

天然气可以划分为气藏气、溶解气两个种类,不 同种类的天然气其采输过程也存在一定的差异。其中, 气藏气开发主要依托于弹性能量展开衰竭式开采,在 部分能够建立注采井网的凝析气藏, 为了避免储藏大 量产生反凝析以及提升凝析油采收率,在天然气开发 初期也有部分单位采用循环注气方案采收天然气,这 种方式通过注气的方式提升气藏压力, 但受到底层物 性、流体成分等因素影响,需要在开采中配套相应的 措施,如注入药剂、排液采气系统等[1]。气井井口压 力在每个开采阶段存在差异, 在开采初期、稳产期的 压力较高,其余的阶段压力较低,在集输过程中通常 使用天然气资源作为能量。在气井开发后期,部分企 业采用降压集气、增压外输等工艺提升采收率。其主 要的集输流程为:气口井-节流降压-集气站-脱水 站 - 外输管网。溶解气是天然气开采的重要部分,是 指在生产原油过程中分离所产生的油田伴生气体。其 主要技术流程为:联合站-集输管网-天然气处理厂 - 天然气外输。

2 天然气采输过程的能耗评价指标

2.1 工艺评价指标

天然气采输过程能耗工艺评价指标主要包括:集

输系统的万方输差、采气单耗、输气单耗。其中,集输系统的万方输差是指天然气集输 1×10⁴Nm³ 的情况下所消耗的能量。作为一种评定集输系统运行质量的核心指标之一,万方输差会直接受到输送气体性能、天然气性质、传输方式、工艺水平、管线性能等因素影响。采气单耗,是指气田生产综合能耗和天然气采集量的比值,可以有效衡量采气系统能耗水平,是评价集输系统综合性能的重要指标。输气单耗,是指输气系统能耗和天然气输气量的比值,可以有效衡量输气系统的能耗水平,是评价集输系统综合性能的重要指标。

2.2 设备评价指标

设备评价指标主要包括设备运行效率、单位压缩 气体气耗量、单位处理天然气气耗量。其中,设备效 率是指设备运行中实际的生产性能与理论上设备生产 性能的比值。设备效率直接受到运行时间、运维方法、 材料质量、操作人员专业能力、产品合格率等因素影 响,可以分为设备组效率、单台设备效率两种评价内 容。单位压缩气体气耗量,是指压缩机(组)的天然 气损耗量、电能损耗量与压缩气量的比值,是评价压 缩机(组)运行效率的重要指标。单位处理天然气气耗, 是指加热炉的耗气量与加热气量比值,是评价加热炉 运行效能的重要指标。

3 天然气开采集输节能技术

天然气采输过程中主要产生能耗的因素有:气体加热、气体膨胀、管道或设备腐蚀、放空损耗、管道泄露、管道更换、设备耗能等,需要从多方面采取天然气采输节能技术,最大程度上降低天然气采输过程中的能耗量。可以采用以下技术方法降低采输能耗量:

3.1 提高地层热流利用率

为了避免或减少水合物生成量,同时减少水合物 抑制能源使用量,大部分采气企业都采用井下节流方

中国化工贸易 2023 年 3 月 -121-

案。井下节流充分利用地层热流的热能,在实际操作中在井下节流器上安装可以活动的气嘴,并将节流器设置在气井生产油管当中,在井筒内天然气会产生节流膨胀,减少外部热能的输入量。节流降温天然气依然可以吸收地层热能,待到温度持续降低,气体井口压力也会降低,待到降低到符合进站标准后,此时温度大于水合物生成温度,这样就避免或减少了水合物的生成量,而管道堵塞的主要物质就是水合物,通过减少水合物生成可防止管道堵塞,降低了井口加热耗能量,减少了相关设备、线路的投资量。井下节流方案由于技术上的限制,目前更多应用于中高压气田开发领域。

3.2 注入水合物抑制剂

水合物抑制剂顾名思义是可以减少或避免水合物生成的物质,应根据天然气物性决定注入量。由于天然气膨胀过程中会吸热制冷,而降温程度会影响加热设备负荷量以及抑制剂使用量。综合考虑水质量分数、水合物温度降低的关系选择抑制剂种类。其中,大部分氯化物都可以用于水合物抑制剂,但氯化物用作抑制剂更多是应用在脱水剂,在露点要求低、小流量、重量受限的海上平台。在陆地气田中较为常用的抑制剂包括二甘醇、乙二醇、甲醇等。想要实现天然气集输节能需要控制抑制剂使用量,特别是水相内抑制剂量浓度是决定抑制剂用量的核心因素,通过查询相关资料得知甘醇注入量在 0.8-1.4L/m³ 范围内可以有效起到节能效果[2]。

3.3 防腐技术

管道腐蚀、设备腐蚀会降低天然气的集输综合性能,所以做好防腐工作是降低集输能耗的重要一环。目前,采气行业中普遍应用的防腐技术主要包括腐蚀测量、药剂防腐、工程防腐、电化学保护等。其主要表现为:

3.3.1 腐蚀测量技术

常见的腐蚀检测技术包括目视检测、渗透检测、 漏磁检测、无损检测、热流检测等。集输管道腐蚀检 测的主流方法有泄露探测、绝缘层电阻探测、直流电 位梯度检测、内壁窥镜检测等。通过腐蚀测量确定腐 蚀部位,并采取相应的防腐措施起到节能效果。

3.3.2 药剂防腐

管道内介质与金属管道内壁接触会加速腐蚀,可以通过加入药剂的方式缓解腐蚀问题。减缓腐蚀的药剂包括缓蚀剂、除垢剂、杀菌剂等,市场所开发的相关产品不断增多。药剂防腐的重点是控制药剂添加量,

如果药剂添加量过多会增加成本,应根据添加药剂缓 解的腐蚀程度所带来的经济效益确定药剂添加量。

3.3.3 工程防腐

防腐工作质量会直接影响生产设备使用寿命以及后续节能空间,常见的工程防腐技术包括表面防腐技术、除锈技术、化学处理技术、镀层技术、防腐涂料技术等。管线内壁是腐蚀的重点区域,可以通过添加胺固化环氧树脂涂层起到介质与内壁的隔绝作用^[3]。

3.3.4 电化学保护技术

电化学保护技术可以分为外加电流阴极保护、牺牲阳极保护两种方式,需根据现场实际情况、经济指标选择保护方法,同时还要考虑维护、操作成本,在经济合理的情况下选择电化学保护技术。

3.4 降低放空损耗量

降低放空损耗量是减少天然气能耗的重要环节, 可以采用气井柱塞举升减喷技术、回收放空天然气技 术。

3.4.1 气井柱塞举升减喷技术

老气田具有压力低、自喷性弱、难以通过气举生 产等问题,停止井底积液生产,需要关井一段时间用 于恢复井底能力,之后通过井口放喷排液技术使其恢 复生产, 但一个井口想要恢复到正常生产能力需要进 行多次放喷,每次放喷都会导致大量天然气流失。气 井柱塞举升减喷技术即可有效避免此类问题, 该项技 术可以通过在井底释放较小的压力气举实现恢复井口 生产性能的作用,并且在多年应用中该项技术较为成 熟。在实际应用中,将生产井的实际性能和参数传输 到自动控制系统中,根据实际情况在井内投入柱塞, 按照系统预设方案控制柱塞上下运动,持续一段时间 就可以将井内积液举升到井口, 起到井筒积液排放的 目的。在实际操作中,在井内安装弹簧承接器,关井 后柱塞在自身的重力作用下会下落到弹簧承接器上, 在承接器的作用下将柱塞举升,同时伴有液体,液体 举升到井口后下方气体也得到释放, 柱塞达到井口完 成一个举升后自动关闭井口, 柱塞重新回落到承接器 上, 反复举升实现天然气循环开采, 减少了天然气放 空损耗量。此外, 柱塞在上下运动过程中会逐渐清除 掉井筒中的结晶盐、结蜡[4]。

3.4.2 回收放空天然气技术

在气井钻井或射井放喷测试当中,为了检测气井 产层参数或将井筒液体清除,在此过程中大量天然气 会通过放喷、放空燃烧掉。由于测试时间较长,会持 续放空天然气,导致资源浪费。天然气开采中,油气 分离、油水分离时需要天然气加压外输,在外输后罐内加压气、节流装置清洁计量直管、施工动火功工艺管道等环节均会出现放空情况,浪费掉大量天然气。 而通过建立天然气回收放空系统即可有效收集这些被放空的天然气,将这些放空天然气利用压差倒入低压供气系统中以供二次利用,从而减少天然气的放空量。

3.5 管道防护技术

管道在打孔窃气、机械施工时可能遭受到破坏,如果不及时处理会增加安全隐患和能源损耗量。构建管道安全预警系统,通过铺设光缆、设置传感器等方法,检测管道线路周边土壤振动情况,通过 24h 不间断监测捕捉信号,并将信号传递给控制中心分析信号参数,从而判定管道运行中是否存在风险隐患,根据传感器传输的信号判定损坏具备位置。传感器中配备预警系统,一旦检测参数超出设定参数阈值,系统会自动发出警报,告知技术人员及时维修受损管道,将风险和泄露量降到最低^[5]。

一旦发现管道破坏应根据实际表现采取相应的防护措施,主流方案包括带压封堵技术、不停输更换管道技术。带压封堵技术在我国石油气行业发展几十年,不停输更换管道技术作为带压封堵技术的衍生品,可以最大程度上减少管道受损带来的经济损失。该项技术的核心是借助开孔器、封堵器实现缺陷封堵和气流改道,使用封堵器封堵管道泄露部位。在实施中,将施焊管线两侧带压开孔并接通相邻的管线实现不间断输气,之后对管段两侧进行封堵,确保封堵性能能够抵抗气流压力,保证封堵的安全性、可靠性。在新旧管道连接中,使用对口卡具完成连接实现快速对口,形成密闭腔体,整个过程不会有天然气泄漏,保证焊接安全,并且可回收废气管道内的原油,避免原油外流造成污染,提高能源利用率。

3.6 集输设备节能技术

技术设备节能技术的核心做好设备选型和设备设计工作,技术节能的重点设备包括增压设备、油气分离设备。

3.6.1 增压设备

天然气采输需要有增压设备提供动力支持,例如往复式压缩机(容积型)、离心式压缩机(速度型)。往复式压缩机曲轴转速在125-520/min之间(相对较低),排量在0.3-85m³/min之间。整体来看,往复式压缩机的缺陷表现在:曲轴转速低、排量小、排气不连续、体积大、结构复杂、噪声大、故障多、运维难度大等,优势表现在:流量范围宽、压比高、适用性强、

效率高(85%以上)。离心式压缩机的缺陷表现在:存在喘振现象、效率低(最高达到85%);其优势表现在:排量大、压比低、易损部件少、体积小、集成度高、润滑损耗少、转速高、排气均匀。考虑到往复式压缩机无法串联运行,因此针对大流量天然气压缩通常可选用软启轮机-离心压缩机组,往复式压缩机主要应用在气田集输管网当中。根据实际情况选择压缩机可以有效减少资源浪费问题。

3.6.2 油气分离器

在选择油气分离器时最基本的要求是能够满足气液分离的要求,如果气液分离处理量较大时,需要使用多台分离器串联或并联运行。根据气液分离实际需求科学选择设备能够有效提升能源利用率。针对油气流量较大时可选用卧式气液分离器,该设备气液面更大,更有助于气泡脱出。卧式分离器还可以用于凝析气处理,这是由于凝析气中含有一定量的乳状液、泡沫,油气比相对较高,使用该类型分离器可以减少能耗。而立式分离器更多是处理高杂质含量的油气混合物,能够同时实现油气分离和底部排污的功能。

4 结束语

针对天然气集输中存在能源损耗的问题,应结合 天然气开采特性,利用底层热能、合理应用抑制剂、 加强防腐措施、降低放空量等多项措施,综合减少能 源损耗量、提升能源综合利用率,这样才能够让天然 气集输处在节能最佳状态,提高采气企业的经济效益。

参考文献:

- [1] 邓越. 天然气开采集输节能技术探析 [J]. 商情,2019 (5):555-556.
- [2] 陈丽荣,何文凤,张芳,等.天然气开采集输节能技术探析[[]. 化工管理,2018(4):273-274.
- [3] 张龙超. 天然气开采集输节能关键技术探讨 [J]. 中文科技期刊数据库(全文版)工程技术,2021(9):311-312.
- [4] 常砚芸. 浅析天然气开采集输节能技术途径 [J]. 化工管理,2018(18):118-120.
- [5] 张丙贺. 探析天然气集输系统节能减排技术 [J]. 中国化工贸易,2019(6):85-86.

作者介绍:

陈涛(1987-),男,汉族,甘肃会宁人,本科,甘肃中石油昆仑燃气公司有限公司兰州新区分公司,生产技术办公室主任,生产运行支部书记,研究方向:直线管道管道完整性管理、城镇燃气安全生产运行、城然管道防腐及杂潵电流的引流装置等。