中小型城燃企业管道完整性管理体系建设研究

李 蒙 张安磊 姚文轩 陈 潇(武汉城市天然气高压管网有限公司,湖北 武汉 430000)

摘 要:随着数字化技术的发展和人力成本的不断增加,能源行业以管道完整性管理为契机,以实现降本增效提升本质安全为目标,大力推进智慧管网建设。而中小型城燃企业仍处于起步阶段,管道安全管理存在诸多问题。本文即提出一种完善中小型城燃企业管道完整性管理,从数据采集、高后果区识别、风险评价、完整性评价、维护维修、效能评价六个方面对目前城燃企业管理现状进行分析。本文针对存在的问题,通过数字化管理方式,利用物联网、大数据等信息化技术建立智慧化管道完整性管理平台,从而代替人工进行数据汇集分析,同时为企业提供管道风险预警及辅助决策服务。

关键词:管理现状;智慧管网;体系建设

0 引言

管道是天然气资源输送的主要工具,随着天然气资源需求逐年增长,天然气管道总里程呈迅猛增加趋势,如何保障管道安全,成为各燃气企业关注的重要问题。管道完整性管理即以此应运而生,其对管道不断变化的因素及风险进行识别评估,通过风险降低措施使管道始终处于可控状态,从而预防事故发生,保障管道本质安全。

管道完整性管理流程包括数据采集、高后果区识别、风险评价、完整性评价、维护维修、效能评价六个阶段。其中,数据采集是基础、高后果区识别是重点、风险评价是决策依据、完整性评价是本体状态诊断手段、维护维修是风险降低措施。近年来随着数字化技术的发展和人力成本的不断增加,为实现运营成本降低、劳动生产率提高、管道完整性管理水平提升等目标,燃气企业逐渐推进智慧管网建设,部分已取得较大的进展。

1 中小型城燃企业管道完整性管理现状分析

管道作为燃气企业的生命线,安全性持续受到多方关注。对于长输管线,其管道完整性管理标准已十分成熟。但城镇燃气输配管道完整性管理规范目前仍处于公开征求意见阶段,大型城燃企业结合自身企业标准,从管道建设期形成了较为完备的全生命周期管理体系,而中小型城燃企业仍处于探索阶段,在管理方面存在诸多的不足。

1.1 基础数据方面

燃气管网在长期运营过程中积累了大量的数据资产,但大多以图纸、电子表格数据存放,有的公司已建立地理信息系统,但仅录入了管道主体数据,其附属结构、阴保设施录入缺失或不全,不能满足各专业

的数据检索和应用。同时存在系统不兼容、跨平台开 发等多种问题,没有形成各类专题数据,对数据的分 析挖掘还处在初步阶段。

1.2 高后果区管理方面

对高后果区、高风险段等重点部位采用人工巡护。 一方面人工巡护受地形地貌、地理位置等因素影响, 日常巡检难度较大,且无法实现全方位连续智能监控。 另一方面人工巡护易发生漏巡错巡,且常年完成一件 事易形成疲劳降低巡护质量。

1.3 风险评价方面

大部分公司管线建设时间较长,无法掌握建设期 与运营期管道周边环境和社会发展变化趋势对比。对 于建设期遗留的隐患排查,现场复核和完整性评价的 工作量较大,且缺乏检测和完整性评价技术方面的有 效手段。

1.4 完整性评价方面

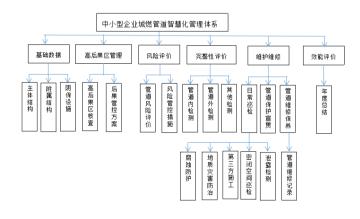
城燃管道由于路由复杂,阀门、弯头较多,难以 使用智能清管器,无法开展管道内检测作业。此外, 城燃管道靠近城市核心,管道改迁、杂散电流干扰、 第三方施工等事件发生概率大,给中小型城燃企业管 道完整性管理带来一定的风险挑战。

1.5 维护维修方面

普遍采用人工进行巡检:

在腐蚀防护方面,未使用管道智能测试桩,且缺乏标准规范的支持;在地质灾害防治方面,未识别、评价管道沿线地质灾害频发区域,未在管道横坡敷设、滑坡、断裂带、大型跨越、高填方等地质灾害易发区,对管道应力的在线监测、分析和预警;管道泄漏监测方面,处于人工泄露检测阶段,无法形成全天候在线监测,未建立报警信号分析数据库,同时需进一步增

加对天然气管道大型穿跨越区域、阀井等密闭空间的 泄漏监测技术手段;管道安全预警方面,未建立管道 安全预警系统,缺乏预警事件分析数据库,需要进一步强化发展、改进。


综上所述,中小型城燃企业管道完整性管理目前 尚处于起步阶段,管线主要依靠于人工进行现场管理, 数据介于纸质与数字化存储之间,管道完整性管理体 系虽已建立,但缺少信息化手段辅助现场监视,管理 分析预警,供高层决策参考信息较少。

2 中小型城燃企业管道完整性管理体系建设

智慧管网建设为中小型城燃企业管道完整性管理 提供了新的思路,可通过数字化管理方式,利用物联 网、大数据等信息化技术建立智慧化管道完整性管理 平台,从而代替人工进行数据汇集分析,同时为企业 提供管道风险预警及辅助决策服务。

但中小型企业在运营规模、体量和管理水平不及 大型企业,在有限的资源下盲目跟随其建设脚步既无 助于当前管理,也不利于未来发展。应在管理与技术 水平提升上实现同步,使技术能真正服务于企业管理 需要。

2.1 起步阶段,完善基础数据采集

2.1.1 基础数据采集

完善管网图形、地形背景图形、管网周边环境、 管网设备设施属性、天然气业务属性、管道内外检测 等数据;对管道沿线存在的密闭空间设置激光甲烷传 感器及水位检测设备,实现对密闭空间状态进行实时 监控,并将数据远传至监控系统中;将管道沿线阴极 测试桩更换为智能阴极测试桩,自动检测阴极保护电 位、自然电位等相关阴极保护数据,并将数据远传至 监控系统中,同时在受杂散电流影响管道部署干扰防 护系统;利用振动地钉、分布式光纤、管网哨兵等技 术,对管道进行地表形变的监测,结合"形变量、威胁对象、地形地貌"等重要因子,对形变数据进行提取、筛查等分析工作。在沉降和应力应变风险较高处管线上部署监测点,实现对可疑沉降和应力应变监测点的实时监测;在杂散电流较严重及监测使用管线等重点区域设置音波检测装置,实时处理和识别采集的音波及压力流量信号,实现准确、可靠、稳定的泄漏监测功能;根据管道沿线建筑密度、道路网络、土地利用类型、建筑类别识别管道高后果及高风险区并建立实时视频监控平台。由于本阶段现场涉及技术较多,可选择合适技术优先在部分管线上试点部署,同时通过实际运营梳理完善各岗位职责及必备技能,并制定配套制度与标准。

2.1.2 管道巡护管理

利用信息化技术实现对城燃管道、阀室、阴保桩 及周边密闭空间等设施进行日常巡检和专项检测人员 工作情况有效、实时、透明化的监管。尽可能的保障 巡检工作的质量,减少天然气事故的发生,提高公司 的安全生产运营水平。对于高山密林湖泊等巡护人员 难以正常在管道上方巡检的管道,可采取无人机辅助 巡护。

2.1.3 第三方施工管理

实现第三方施工基本资料、前期对接、施工中检查以及竣工验收等信息管理功能。其中,基本资料包括位置、工程描述、计划等因素;前期对接包括施工方案、安全评估报告、安全协议、安全交底等资料;施工中检查是针对施工过程中现场管理过程,检查相关资料包括时间、地点、人员、现场照片、相关资料等,必要时应在现场设置智能 AI 视频监视系统,进行实时监控与预警;竣工验收包括竣工报告。系统能够对第三方施工的状态,流程运转进行实时监测。

2.1.4 人员管理及思路转变

首先巡线员除完成现有巡护工作外,还需增加对 阴保测试、密闭空间监测等现场实时数据传感器的日 常巡检,同时培养其故障判断处置能力。其次片区管 理人员应转变思路,由现场管理向远程与现场管理过 渡,加强对平台数据的监视,结合管理经验准确识别 现场数据异常产生的原因及后果。再次为提高现场设 备故障处置及时性,维修中心应学习新增管线设备的 工作原理与维护方法,积累设备维修经验。最后调度 员应熟悉管线现场情况,并加强相关专业知识的学习, 为统一管理做准备。

中国化工贸易 2023 年 7 月 -101-

2.1.5 管道保护

与当地主管部门、管线周边燃气企业合作建立信息共享机制,及时交流管道监测、施工及周边环境改变等信息;共同制定应急预案,积极利用外部资源提高紧急事件处置效率。

2.2 全面建设阶段, 搭建天然气管道完整性管理平台

2.2.1 持续完善基础数据采集

本阶段应形成智慧管网建设标准,并在企业内部 进行全面推广。需要注意是采集数据传输接口应统一 标准,避免出现无法接入平台的情况。

2.2.2 实现数据集中展示,搭建完整性管理平台

将密闭空间、阴极保护电位测试、应力应变监测、现场视频、智能音波检测、SCADA、阀室 PLC/RTU 状态等数据进行汇总、存储。以天然气管线 GIS 系统为纽带,对管道本体、管道周边环境、阴极保护测试、管道泄露监测、密闭空间氧含量等数据进行实时展示。

2.2.3 PLC/RTU 远程检测

对阀室内 PLC/RTU、温度压力变送器等设备,根据 SCADA 实时、历史数据库实现远程诊断、趋势分析、报警提示等功能。

2.2.4 建立数字化管网运行管理模式

在各管理区域设立中心站, 部署管道完整性管理 平台客户端, 实现在线数据集中监控。通过制度、规 范、操作指引等规范各工种员工职责、操作及管理流 程, 实现一体化运营协作。

2.2.5 与主管部门、上下游企业合作建立数据共享

汇集公司上下游管线实时温度、压力,周边地理、 水文、环境、人口等数据信息,为后续建立智能分析、 评价系统提供数据基础。

2.3 不断完善阶段,实现天然气管网智慧化

2.3.1 高后果区智能识别分析

根据周围环境变化等外部因素实现城燃管线高后 果区智能识别功能,并可根据实际需要实现实时分级 统计、趋势统计、等级变化率统计等功能。

2.3.2 管网风险评价管理

实现管道风险评价数字化管理功能。通过该功能 为企业提供精准、可量化的管道风险隐患现状数据和 评价报告,为管道保护工作提供高效实用的管道风险 隐患分析、管理工具。

2.3.3 管道完整性评价

对各类检测或检验包括计划、现场作业、报告、设备巡检、维修维护等全生命周期进行跟踪记录管理,

并进行可视化的展示与分析。同时将管道检测数据对 齐,实现多轮检测数据比对与智能分析。

2.3.4 管线应急处置与抢险

利用管道地理信息数据、备件综合信息、外部资源信息、其他业务相关数据及以往事故资料、历史数据和维抢修情况等基础资料以及 SCADA 数据等,减少应急反应的时间、增加判断事故原因的准确度、提升应急反应的协作效率、提高维抢修人员的业务素质,能帮助提高生产运行过程中紧急事故的防范与处理水平。同时根据相关施工方案、材料以及机械清单自动输出方案供管理人员参考决策。

2.3.5 建立全面的管道保护体系

从规范制定、信息共享、应急演练等方面与政府 主管部门进行全方位合作,减少潜在风险事件发生, 提高管道的安全性和可靠性。

2.3.6 智慧管网管理体系搭建

在管道完整性管理平台接入上述智慧化功能。在 巡线、管理、维修、调度等各岗位进行深入应用,成 熟后对职能进行完善调整。同步编制相应的制度、规 范以及标准,最终实现运检维一体化管理。

3 总结

当今是数字化时代,智慧管网作为管道完整性管理数字化的具体体现,可以促进企业提高管理效率,提升本质安全,推动安全发展。但智慧管网建设不是一蹴而就的,需要长期发展实践。中小型城燃企业应积极把握数字技术所带来的新契机,推动智慧管网建设。同时,通过外部协作与内部管控,解决在数字化转型中的外在约束与内在桎梏,并探寻与之发展相契合的数字化转型路径,加快进入以数字化、信息化为主导的智慧燃气发展新阶段。

参考文献:

- [1] 王金榜. 浅析天然气管道完整性管理 [J]. 中国石油和化工标准与质量,2021(03):70-71.
- [2] 乔元立. 天然气管道风险评价与完整性管理探究 [J]. 中国高新科技,2019(02):45-47.
- [3] 薛鲁宁, 李莉. 智慧管网技术标准体系架构探索 [J]. 中国标准化,2023(06):50-57.

作者简介:

李蒙(1988-),男,汉族,湖北武汉人,本科,工程师,武汉城市天然气高压管网有限公司,研究方向:管道保护、生产运行、维修维护等。