天然气长输管道项目工程建设的施工技术

关维军(山东胜越石化工程建设有限公司,山东 淄博 255400)

摘 要:随着能源需求的不断增长,天然气作为一种清洁、高效的能源,在国民经济中的地位日益凸显。 天然气长输管道作为天然气输送的主要方式,其施工技术对于保障能源安全、提高输送效率具有重要意义。本 文旨在探讨天然气长输管道项目工程建设的施工技术,包括地质勘察、施工设计、管道材料选择、开挖回填、 管道铺设焊接、防腐保温以及测试验收等方面的技术要点,并分析施工过程中的安全管理与环境保护措施。

关键词: 天然气; 长输管道; 施工技术; 安全管理; 环境保护

0 引言

天然气长输管道是连接天然气产地与消费地的桥梁,更是国家能源安全的重要保障。其建设质量的好坏直接决定了天然气供应的稳定性和安全性。随着科技的不断进步,天然气长输管道的施工技术也在持续创新和完善。从地质勘察到管道铺设,从防腐保温到测试验收,每一个环节都凝聚着科技的力量,确保天然气能够高效、安全地输送到千家万户。

1 天然气长输管道的重要性

天然气作为一种清洁、高效、储量丰富的化石燃 料,在当前能源结构中扮演着越来越重要的角色。相 较于煤炭、石油等其他化石燃料,天然气在燃烧过程 中产生的二氧化碳、硫化物等有害气体排放量较低, 对大气环境的污染影响较小, 因此被认为是较为理想 的过渡性能源。随着全球气候变暖问题日益严重,各 国都在积极调整优化能源结构,大力发展天然气利用, 以期在保障能源供给的同时,实现温室气体排放的有 效控制。而天然气长输管道正是保障天然气供应的重 要基础设施。与海运、铁路等其他运输方式相比,管 道输送所需的单位投资较低、能耗较小, 且具有连续 性强、损耗率低的优势,通过修建大规模的长输管道 网络,可以将分布于偏远地区的天然气资源输送至经 济发达地区,满足工农业生产和民生用能需求。同时, 长输管道网络的建设还将促进中西部地区经济的发 展,带动沿线地区的工业化进程,具有重要的社会经 济意义。

当前,我国天然气长输管道网络正在快速发展阶段,西气东输、川气东送等一批重点项目陆续投产,未来还将继续加大建设力度。因此加强对天然气长输管道建设和运营管理的重视,对于保障国家能源安全战略,促进绿色低碳发展,推动区域经济协调发展,都具有十分重要的现实意义。

2 天然气长输管道施工技术

2.1 地质勘察与环境评估

天然气长输管道工程建设过程中,地质勘察和环境评估是确保施工质量和工程安全的重要基础环节,通过全面细致的地质勘察,能够准确掌握管道沿线的地形地貌、地质构造、水文条件等基础信息,为后续施工设计和方案制定提供科学依据。地质勘察不仅需要查明地表地质情况,更需结合钻探、物探等多种手段,全面评估地下深层地质条件,特别是需关注断层构造、软土地基等不利地质因素的分布和影响程度。同时,环境评估也是必不可少的重要环节,需要对管道施工对环境可能带来的影响进行系统评估。评估内容包括生态环境影响、水土流失影响、大气污染影响等多个方面,并提出切实可行的预防和减缓措施。此外,环境评估还需重点关注管道穿越自然保护区、饮用水源地等环境敏感区段的处理对策,确保工程建设不对环境造成破坏性影响。

地质勘察和环境评估结果直接关系到后续工程方 案的可行性和经济合理性,需要精心组织、科学分析、 审慎决策。在勘察评估过程中,应尽可能采用先进的 勘察技术手段和科学的模型算法,运用大数据和云计 算技术提高分析能力,确保勘察评估结果的准确性和 全面性。

2.2 施工设计与方案制定

在完成地质勘察和环境评估之后,下一步就需要针对具体工程情况,制定科学合理的施工设计和施工方案。设计和方案制定环节直接决定了管道施工的质量和效率,是确保工程顺利实施的关键。施工设计应当在充分研究勘察评估结果的基础上,统筹考虑沿线各区段地质条件、环境条件、工程量大小、施工难易程度等多方面因素,合理确定管道线路走向、管径大小、设计标准等关键参数。同时设计还需考虑给排水、

中国化工贸易 2024 年 2 月 -103-

通风、防火等配套设施的建设要求。为了确保设计方案的可行性和经济合理性,有必要运用计算机仿真模拟技术,对多种设计方案进行对比分析,选择最优方案。施工方案则需要制定管道开挖、铺设、焊接、防腐保温等各个环节的具体施工工艺和技术路线,高质量的施工方案能够最大限度提高效率和质量,还能减少安全隐患,降低环境影响。

2.3 管道材料选择与加工技术

选择优质的管道材料,并采用先进的加工工艺, 是保证天然气长输管道安全稳定运行的前提条件。在 材料选择方面,需要根据天然气的物理化学特性、输 送压力和温度,以及管道所处环境等因素,谨慎选用 满足使用要求的钢材。管道钢材要具备足够的强度和 抗压能力,还要具有良好的耐蚀性、塑性和焊接性能。 此外钢材的内外防护涂层也是保证管道使用寿命的关 键因素。在加工方面,钢管切割、弯曲、坡口和焊接 等都是至关重要的工序环节。先进的切割技术可以提 高钢管切割质量和精度,减少回火带来的焊接难度。 合理的坡口设计和优良的坡口加工能够为焊接环节奠 定基础。焊接技术更是管道安全的重中之重,焊缝的 强度和气密性直接决定了管道的适用性。目前,管道 焊接已广泛采用全自动化机器人技术, 焊接质量和一 致性有很大提高,焊缝检验仍需通过射线探伤、超声 波探伤等手段确保质量合格。

2.4 开挖与回填技术

管道开挖和回填是天然气长输管道施工中最基础 的工序环节,其质量也直接关系到管道的稳定性和使 用寿命。无论是开挖还是回填,施工过程中都需格外 注意对地质环境和生态环境的保护,采用先进高效的 施工技术,尽量减小破坏程度。在开挖环节,需要根 据不同的地质条件选用合适的开挖方式,对于岩石地 质需采用爆破开挖或机械开挖,对于软土地质则更多 采用人工开挖。开挖过程需注意管沟断面尺寸控制、 边坡防护和打撑支护等细节问题。在山体、河流等特 殊地段, 需特别重视开挖风险防范, 必要时采用顶管、 盾构等无需开挖的新型施工技术。回填方面,则需要 对填土材料、分层夯实工艺、路面恢复等环节制定规 范标准。填土质量是确保管道长期稳定的关键,需选 用符合要求的优质土料,并通过严格的分层夯实确保 填土密实度。此外, 回填过程中还需做好场地平整、 排水系统恢复、植被恢复等生态修复工作,最大限度 减少对环境的影响。

2.5 管道铺设与焊接技术

管道铺设与焊接是天然气长输管道施工的核心技术,对工程质量和安全性具有决定性影响。管道铺设需要严格按照设计路线精准定位,对地下障碍物和线路交叉段需妥善处置,保证管道无扭曲变形。铺设过程中还需严格控制管道坡度和转折半径,确保符合设计标准。在高填方路段,需特别注意管沟支垫和保护层设置,以保证管道在重力和外力作用下的稳定性。焊接是管道工程中最关键的工艺环节,焊缝质量事关管道的整体密封性和承压能力。目前,管道焊接技术已普遍采用自动化焊接,焊接机器人可以确保焊缝成形质量和一致性,大大降低了人为操作失误的风险。与此同时,无损检测技术如射线探伤、超声波探伤等也广泛应用于焊缝质量检测,能及时发现裂纹、夹渣等缺陷,确保焊缝质量合格。

2.6 管道防腐与保温技术

为了延长天然气长输管道的使用寿命,有效防止 腐蚀以及减少输气过程中的能量损失,采用先进的防 腐和保温技术是必不可少的。管道防腐主要采用阴极 保护和外防腐层两种技术。阴极保护利用附加外加电 流或者利用牺牲阳极原理,使管道钢体形成"受保护 "状态而免受电化学腐蚀。而外防腐层则主要是通过 在管道外壁涂覆耐腐蚀的环氧树脂、热塑性聚烯烃等 高分子材料,形成绝缘阻隔层来防止管道遭受外部腐 蚀介质的直接侵蚀。保温技术主要针对常温输气管道。 保温层一般采用聚氨酯泡沫塑料或者无机硅酸盐类材 料等高效保温材料制成。保温层能有效降低天然气在 输送过程中的散热损失,提高能量利用效率。当然, 保温材料的耐久性、耐候性以及成本等综合因素也需 要权衡考虑。在防腐保温施工环节,自动化喷涂和卷 曲包裹技术已广泛应用,可以快速高效地形成均匀致 密的防腐保温层。

2.7 管道测试与验收技术

为全面确保天然气长输管道的安全性和可靠性, 在管道全线施工完成后,开展系统全面的测试与验收 工作。测试验收是保证管道工程质量的最终关口,必 须严格执行各项测试标准和验收规范。管道测试通常 包括水压试验、气压试验、管内智能检测等多个环节。 水压试验主要用于检验管道的密封性和抗压能力,通 过向管道内注入规定压力的水和压缩空气,检测是否 存在泄漏和变形;气压试验则用于管道内部清洁度检 查,防止存在杂质影响输气;智能检测主要借助高清

-104- 2024 年 2 月 **中国化工贸易**

摄像仪或射线探测仪等智能检测装置,检查管道内壁是否存在缺陷和缺口。验收则主要通过现场查勘、文件审核、外业实测等途径,全面核查管道各项设计指标和技术指标是否符合要求。现场查勘集中检查沿线地形地貌变化、防护工程等;文件审核核查设计文件、施工报告等;外业实测则验证管道走向坐标、回填密实度等核心指标。只有在所有测试验收项目全部合格情况下,管道工程方可最终验收交付使用。在后续运行阶段,还需对管道的保护层、阴极保护系统等进行定期巡检维护,及时发现问题进行修复,防患于未然。

3 天然气长输管道项目施工过程中的安全管理与 环境保护

3.1 安全规章制度建立与执行

为了确保天然气长输管道项目施工过程中的人员 安全和设备安全,制定完善的安全规章制度是必不可 少的基础性工作。在项目启动之初,安全管理团队就 应该组织相关专家、工程技术人员,以及管理人员共 同研究,全面梳理施工作业中可能存在的各种安全隐 患,并结合国家和行业相关法律法规,以及企业自身 的安全管理经验,制定出切实可行的作业指导书、管 理制度和应急预案等配套文件。制度的落实执行更为 关键,必须从管理层做起,严格要求各级人员遵守制 度。同时加强安全教育培训,提升全员的安全意识和 应急处置能力;建立完善的日常检查、季节性大检查 和专项检查制度;对违规违纪行为绝不姑息,视情节 给予批评教育直至处罚。

3.2 危险源识别与风险控制

天然气长输管道项目施工过程涉及多个工序和环节,危险源也是错综复杂的,通过事前评估、过程监控和事后总结,对施工全过程中的各类危险源进行全面识别,是有效控制风险的前提。需要重点关注的危险源主要有:挖掘作业中的崩塌、落石、淹没等;焊接和热作业中的火灾、爆炸等;起重作业中的物体打击和垮塌等;车辆和行人伤害等;有限空间作业中的中毒和窒息等。对已识别的各类危险源,管理团队必须制定详细的防范措施,从源头系统控制风险。具体包括选用先进可靠的施工工艺和设备;严格执行作业规程;设置安全防护设施;强化人员培训;加强监督检查等,坚持用制度和流程来管控风险,做到遏患于萌芽状态。

3.3 应急预案制定与演练

任何准备工作再充分,也难以完全规避突发安全

事故的发生。因此,制定详尽的应急预案势在必行, 以有效应对一旦发生的安全生产事故、人员伤亡、环 境污染等各类突发状况。应急预案应当涵盖应急组织 指挥体系、报警通信程序、人员疏散撤离方案、应急 救援队伍组建与装备配备、事故调查评估与保险理赔 流程等内容。制度的存在还须强化执行,除了定期组 织全员学习外,更应当定期开展应急演练,通过模拟 不同事故场景,检验预案可操作性,找出漏洞和不足, 并及时予以完善。

3.4 环境保护措施

天然气长输管道项目由于线路长、跨越区域广, 其施工活动必然会对沿线地区的大气、水体、声环境、 植被等方面产生一定程度的影响。为此,必须坚持" 保护环境就是保护生产力"的理念,从项目设计阶段 就将环境保护因素充分纳入考量,采取一系列切实有 效的环境保护措施。首先,优化管线走向路线,避让 重点保护区域,改变工程对环境的直接影响;合理布 设施工场地,减少对周边的占用面积和干扰程度。其 次,管控施工现场的三废排放,采用环保型机械设备、 工艺和材料,削减三废污染源头;建设临时性污水处 理、降尘等设施,实现达标排放。再次,控制噪声污染, 对高噪设备采用隔声、消声等处理,合理安排夜间作 业时间。同时加强对生态环境的保护,做好水土保持 和植被恢复等工作。

4 结束语

天然气长输管道项目工程建设是一项复杂而系统的工程,涉及多个技术领域和多个管理环节。只有不断提高施工技术水平,加强施工过程中的安全管理和环境保护措施,才能确保天然气长输管道的安全稳定运行,为经济社会的可持续发展提供有力保障。

参考文献:

- [1] 唐希天. 石油天然气长输管道工程项目风险管理 [J]. 中国石油和化工标准与质量,2023,43(08):53-55.
- [2] 徐调能. 天然气长输管道项目建设中的质量管理对策分析[]]. 工程建设与设计,2022,(24):250-252.
- [3] 马新雨, 伍颖. 石油天然气长输管道工程项目风险管理探讨[[]. 居舍, 2021, (12):138-139.

作者姓名:

关维军(1974), 男,满族,籍贯:辽宁省新宾满族自治县,学历:大学,职称:工程师,研究方向: 石油化工工程建设。

中国化工贸易 2024 年 2 月 -105-