高温高压环境下的石油化工管道安装应力分析

辛德法 赵 伟 孙力学(沧州森旭港务有限公司,河北 沧州 061100)

摘 要:本文针对高温高压环境下石油化工管道安装过程中的应力问题,从材料性能、应力分析原理、影响因素等方面进行了深入研究。通过建立管道结构模型,采用有限元分析法、弹性力学解析法和数值模拟技术,计算并分析了管道在高温高压环境下的应力分布规律。研究结果表明,温度、压力和管道结构设计是影响应力分布的主要因素。在此基础上,提出了材料选择与优化、结构设计与改进、安装工艺优化以及应力监测与预警系统等应力控制策略、为石油化工管道的安全运行提供了理论依据和技术支持。

关键词:高温高压;石油化工;管道安装应力

随着石油化工行业的快速发展,高温高压环境下的管道安全问题日益突出。管道在高温高压环境中的应力状态直接关系到其安全性和使用寿命。因此,对石油化工管道安装过程中的应力进行分析和研究,对于保障管道系统的稳定运行具有重要意义。

1 高温高压环境下石油化工管道应力分析的理论基础

1.1 管道材料的高温高压性能

石油化工管道所用材料在高温、高压环境下,物 理性质和化学性质都会发生显著变化。这些改变与管 材的强度、韧性和整体安全性有着直接的关系。首先, 从物理性质上讲,材料的热膨胀系数会随着温度的升 高而增加,从而使管材在受热的情况下变形的幅度较 大。此外, 高温还会加速材料的蠕变过程, 即材料塑 性变形缓慢的现象,这种现象在长时间的连续应力作 用下会发生。蠕变不仅使管线的承载力下降,而且可 能造成应力松弛, 使管线稳定性受到进一步的影响。 在化学性质上, 高温高压环境可能使材料发生化学反 应,如氧化、腐蚀等。这些反应会使材料的力学性能 减弱,从而使抗拉强度降低,屈服强度降低,韧性降低。 特别是对于含有腐蚀性介质的管道,高温高压会加速 腐蚀过程,从而增加管道失效的风险。为了评估材料 在高温高压环境下的适用性,就要准确地评估材料的 强度和韧性。强度指标一般包括反映材料在外力作用 下抵抗能力的抗拉强度、屈服强度等。而韧性是指材 料在受到冲击或拉伸时所吸收能量的能力,是评价材 料抗断裂性能的重要指标。

1.2 管道应力分析的基本原理

管道应力分析是确保石油化工管道安全运行的关键环节。其基本原理主要基于应力与应变的关系以及 弹性力学与塑性力学的基础理论。应力是单位面积上

所受的力,它反映了物体内部质点间的相互作用力。 在管道中,应力主要由内压、外压、温度变化和自重 等因素引起。应变则是物体在受到外力作用时发生的 形状或尺寸的变化。应力与应变之间存在确定的关系, 即胡克定律,它描述了弹性体内应力与应变之间的线 性关系。弹性力学是研究物体在弹性限度内应力、应 变和位移分布规律的学科。在管道应力分析中,弹性 力学理论被广泛应用于计算管道的变形、应力和位移 等参数。通过求解弹性力学方程,可以得到管道在特 定载荷条件下的应力分布和变形情况。当管道受到的 应力超过其弹性极限时,材料将发生塑性变形。此时, 塑性力学理论成为分析管道应力的关键。塑性力学研 究物体在塑性变形过程中的应力、应变和位移关系, 以及材料的塑性流动和断裂行为。在管道设计中,需 要考虑材料的塑性变形能力,以确保管道在极端条件 下的安全性。

1.3 高温高压对管道应力的影响因素

高温高压环境对石油化工管道的应力分布具有显著影响。这些因素主要包括温度变化引起的热应力、压力变化对管道结构的影响以及介质特性与管道材料的相互作用。温度变化是引起管道热应力的主要原因。在高温高压环境下,管道内外壁的温度差异会导致热膨胀不均匀,从而产生热应力。热应力的大小取决于管道材料的热膨胀系数、温度梯度以及管道的几何尺寸。为了减小热应力对管道的影响,需要合理设计管道的支撑结构,以限制管道的变形和位移。不能忽视压力变化对管道结构的作用。随着压力的升高,管道的内壁会受到更大的压力作用,导致管道发生径向和轴向的变形。同时,压力变化也可能造成管道的震动和疲劳破坏。因此,在管道设计中需要考虑压力对管道应力的影响,并采取相应的措施来增强管道的承压

-142- 2025 年 1 月 **中国化工贸易**

能力和稳定性。

2 石油化工管道安装应力分析的计算模型与方法 2.1 管道结构模型建立

建立管道结构模型是分析受力的一个依据。在建立模型的时候,需要首先确定管道的几何形状与尺寸。这包括管道的直径、壁厚、长度以及弯头、三通等管件的具体形状和尺寸。这些参数都会对管道的应力分布及变形造成直接的影响。

除了管道的几何形状和尺寸以外,管道的支撑和 约束也是必须考虑的。支撑结构起到固定管道位置、 限制管道变形的作用,是管道系统的重要组成部分。 在建立模型的时候,支撑结构的种类、位置、刚度等 参数都需要有详细的描述。同时,还需要设置合理的 约束条件,以模拟管道在实际运行中的受力情况。

2.2 应力分析的计算方法

在分析石油化工管道安装受力情况时,可以采用 多种计算方法。其中三种常用的方法是有限元分析法, 弹性力学解析法和数值模拟与仿真技术。基于数值分 析的应力计算方法是有限元分析法。它把管道分成若 干个较小的单元体,通过求解每个单元体的应力、应 变和位移等参数,得到整个管道的应力分布情况。有 限元分析法的优点是计算精度高,适应性强,但是计 算过程比较复杂,需要专业的软件和计算资源。弹性 力学解析法是以弹性力学理论为基础,运用应力计算 方法的一种分析法。通过建立管道的力学模型,对管 道的应力、应变及位移等参数进行弹性力学方程的求 解。弹性力学分析法的优点是: 计算过程简单、易懂, 但对复杂形状的管道、管件来说,适用范围比较窄, 不能很准确的求解。数值模拟与仿真技术是以计算机 模拟应力计算方法为基础的一种数值模拟与仿真技 术。它通过建立管道的虚拟模型,对实际运行中管道 的受力进行模拟,并对管道受力的分布进行测算。数 值模拟和仿真技术虽然具有很好的可视化效果、易于 修改和优化, 但是计算精度和效率取决于模型的复杂 程度, 也取决于计算资源的限制。

2.3 计算参数的确定与边界条件设置

在进行石油化工管道安装应力分析时,需要确定 一系列的计算参数和边界条件。这些参数和条件将直 接影响计算结果的准确性和可靠性。首先,需要选取 合适的材料参数。材料参数包括弹性模量、泊松比、 屈服强度等,它们反映了材料的力学性能和变形特性。 在选取材料参数时,需要考虑管道材料在高温高压环 境下的性能变化,以确保计算结果的准确性。其次,需要设置合理的载荷与边界条件。载荷是指作用在管道上的外力或内力,包括内压、外压、温度载荷等。 边界条件是指管道在特定位置上的位移、转角或力等约束条件。在设置载荷与边界条件时,需要充分考虑管道在实际运行中的受力情况和约束条件,以确保计算结果的可靠性。

3 高温高压环境下石油化工管道应力分布规律研究 3.1 温度对管道应力分布的影响

管道应力分布的一个关键因素是温度。在高温高 压环境下,管道内外壁的温度差异会形成温度梯度, 进而引发热膨胀与热应力。温度梯度和应力分布关系 密切。管道受热时,内外壁温度的差异,造成管道热 膨胀不均匀。这种不均匀的膨胀会在管道内部产生热 应力,特别是在管道的连接处、弯头、三通等位置, 热应力会因几何形状的改变而更加显著,这一点在管 道内部是非常突出的。所以管道应力的分布和大小直 接受温度梯度的大小和方向的影响。热膨胀与热应力 的分析是管道应力研究的重要内容。通过理论计算和 实验测试,可以获取管道在不同温度梯度下的热膨胀 系数和热应力分布情况。这些数据为管道的设计和安 装提供了重要的参考依据,有助于避免由于热应力过 大而导致的管道失效。

3.2 压力对管道应力分布的影响

压力是管道应力分布的另一个重要因素。在高压环境下,管道的内壁会受到巨大的压力作用,导致管道发生变形和应力集中。压力变化对管道的变形具有显著影响。随着压力的升高,管道的内壁会受到更大的压力作用,导致管道发生径向和轴向的变形。这种变形不仅会影响管道的几何形状和尺寸,还会改变管道的应力分布状态。特别是在管道的薄弱环节,如焊缝、裂纹等位置,压力变化可能引发应力集中和疲劳损伤。管道压力容器的应力分析是确保管道安全运行的关键。通过理论分析和实验测试,可以获取管道在不同压力下的应力分布情况和变形特征。这些数据为管道的设计、制造和检验提供了重要的科学依据,有助于确保管道在高压环境下的稳定性和安全性。

3.3 管道结构设计对应力分布的影响

管道的结构设计也是影响应力分布的重要因素。 合理的结构设计可以优化管道的应力分布状态,提高 管道的承载能力和使用寿命。管道壁厚与直径的优化 是管道结构设计的重要内容。通过合理的壁厚和直径

中国化工贸易 2025 年 1 月 -143-

设计,可以平衡管道的强度和刚度需求,避免由于壁厚过薄或直径过大而导致的应力集中和变形过大。管道连接方式与应力集中的研究也是管道结构设计的重要方面。不同的连接方式(如焊接、法兰连接等)具有不同的应力分布特征。通过对比分析不同连接方式的应力分布情况,可以选择最优的连接方式以降低应力集中和疲劳损伤的风险。

4 石油化工管道安装应力控制策略

4.1 材料选择与优化

材料的选择与优化是控制管道安装应力的基础。 在高温高压环境下,管道材料需要具备良好的耐热性、 耐腐蚀性、高强度和韧性等特性。首先,需要对高温 高压环境下材料的适用性进行评估。这包括材料的热 膨胀系数、蠕变性能、抗氧化性能以及耐腐蚀性等方 面的测试。通过实验室测试和现场应用验证,筛选出 适用于特定工况的材料,确保管道在极端环境下的安 全性和稳定性。其次,新材料的应用与研发也是控制 管道应力的关键。随着科技的进步,不断涌现出具有 优异性能的新材料,如高强度合金、复合材料等。这 些新材料具有更高的强度、更好的耐热性和耐腐蚀性, 能够显著降低管道的应力水平。

4.2 结构设计与改进

合理的结构设计与改进对于控制管道安装应力具有重要意义。通过优化管道布局和支撑结构,可以降低管道的应力集中和变形风险。在管道布局方面,应尽量避免急弯、突变截面等设计,以减少应力集中和疲劳损伤。同时,合理设置管道的支撑结构,如支架、吊架等,以平衡管道的受力情况,降低管道的变形和应力水平。此外,管道连接方式的改进也是控制应力的关键。传统的焊接连接方式虽然具有强度高、密封性好等优点,但在高温高压环境下容易产生应力集中和裂纹。因此,应积极探索和应用新型连接方式,如法兰连接、卡箍连接等,以降低连接处的应力水平。

4.3 安装工艺优化

安装工艺的优化对于控制管道安装应力同样至关 重要。通过优化焊接工艺和质量控制,可以降低焊接 过程中产生的应力和变形。在焊接工艺方面,应选择 合适的焊接方法和参数,如预热温度、焊接速度、焊 接电流等,以减少焊接过程中产生的热应力和残余应 力。同时,加强焊接过程的质量控制,如焊缝的打磨、 检测等,以确保焊缝的质量和强度。在管道安装过程 中,还应采取一系列措施来控制应力。例如,在管道 安装前进行预组装和应力分析,以预测和评估管道的 应力分布情况;在管道安装过程中采用合理的吊装和 运输方式,避免对管道造成过大的冲击和振动;在管 道安装完成后进行应力测试和调试,以确保管道的应 力处于安全范围内。

4.4 应力监测与预警系统

应力监测与预警系统是控制管道安装应力的有效 手段。通过实时监测管道的应力状态,可以及时发现 并处理潜在的应力问题,避免事故的发生。应力监测 技术的应用包括应变片、光纤光栅传感器等。这些传 感器能够实时监测管道的应变和应力状态,并将数据 传输到监测系统中进行分析和处理。通过数据分析, 可以评估管道的应力分布情况,预测管道的疲劳寿命 和安全性。预警机制的建立与实施也是应力监测与预 警系统的重要组成部分。根据管道的应力监测数据, 设定合理的预警阈值。当管道的应力超过预警阈值时, 系统会自动发出预警信号,提醒操作人员及时采取措 施进行处理。

5 结束语

本文通过对高温高压环境下石油化工管道安装应 力问题的研究,揭示了温度、压力和结构设计等因素 对管道应力分布的影响,并提出了有效的应力控制策 略。研究成果对于提高石油化工管道的安全性能、优 化设计安装过程以及预防管道事故具有指导意义。然 而,本文的研究尚存在一定的局限性,如对于复杂管 道系统的应力分析还需进一步深入,新材料的性能评 估和应用也需要更多的实验数据支持。

参考文献:

- [1] 唐建伟,何林杉,姜玲.石油化工管道应力设计探究[[].山东工业技术,2019(04):103.
- [2] 李国永. 石油化工管道设计中基于应力分析的柔性设计分析[]]. 化工管理,2019(25):74-75.
- [3] 白春海. 石油化工管道应力设计探究 [J]. 化工设计通讯, 2019, 45(10):25-26.
- [4] 陈玲玲. 石油化工管道应力设计探究 [J]. 中国石油和化工标准与质量,2019,39(21):124-125.
- [5] 梁亚玲. 对石油化工管道应力设计要点的思考 [J]. 化工设计通讯,2020,42(11):72.

作者简介:

辛德法(1981-)男,汉族,本科,河北省沧州人,石油化工高级工程师,主要从事石油化工工程、生产技术工作。

-144- 2025 年 1 月 **中国化工贸易**