油气管道站场 SIS 系统设置研究

王 凯(中海油气(泰州)石化有限公司,江苏 泰州 225300)

摘 要:油气管道站场面临着复杂工况与高风险特性,做好安全防护工作十分必要。SIS系统是一种有效的安全防护机制,可预防事故发生,保证人员、设备与环境安全,在油气管道站场环境下有着较大应用价值。本文简要介绍SIS系统的结构与特点,探讨该系统在油气管道站场应用场景下该如何设置,以优化设备运行与维护效果,同时对SIS系统展开经济性分析,致力于寻找投资与效益的平衡。

关键词:油气管道; SIS 系统; 基本过程控制系统

0 引言

油气管道站场是石油天然气输送网络的核心枢纽,承担着储存、处理、分配等重要职能,其运行的安全性和可靠性直接关系到能源供应的连续性,也关系到周边社区与自然环境的安全。随着社会经济发展,人们在安全生产及环保方面的意识不断增强,尤其是在高风险、高排放的石化及煤化工等行业,对设备安全防护功能有着越来越高的要求 [1]。在此背景下,安全仪表系统(SIS)的应用受到相关人员的密切关注。

SIS 系统是通过深入研究国际标准及相关实践,从原有的过程控制系统(PCS)中分离出来的一套专门用于联锁保护的新体系,可在软件与硬件层面上实现独立运作,为工业设施提供更为可靠的安全屏障。同时,科学设置 SIS 系统还有助于降低成本、延长设备维护周期,是提升企业经济效益的重要途径。

1 SIS 系统概述

1.1 结构组成

SIS 系统实质上是一种控制机制,可控制一个或多个安全仪表,确保其功能得以有效实现,常用于生产活动中可能出现的各种风险情景。该系统架构主要由三大组件构成:测量部件、逻辑控制器与执行部件,其中测量部件主要为各类传感器,负责收集现场数据,如温度、压力、流量等关键参数;逻辑控制器负责根据预设的安全逻辑算法判断是否触发安全动作;执行机构则负责执行安全防护指令,如关闭阀门、启动应急设备等^[2]。硬件设备配合必要的软件系统,可持续监测关键工艺变量,达到安全防护作用。此系统通常需要与基本过程控制系统(例如分布式控制系统,即DCS)进行信息交互,二者协同工作,形成统一的仪表控制系统,共同管理生产设施的运行。当 SIS 系统在工艺流程或生产设备中探测到潜在的危险信号或不利条件时,可立即触发系统中预设好的安全程序,发

出停机、关阀或其他紧急防护指令,将生产工艺或整 套装备回归至稳定且安全的状态,从而预防安全事故 的发生,或最小化事故影响,有效确保周围作业人员、 装置设备以及自然环境的安全健康。

1.2 优势特点

SIS系统在故障预测、标准化建设、全面自检、 灵活配置与端到端的安全保障等方面都有着独特优 势。该系统利用敏锐的感知系统,可持续监控复杂目 高危的作业环境,精准识别潜在的安全隐患,确保储 运设施、管线和设备的安全运行。同时该系统拥有强 大的自检功能,其诊断覆盖范围广泛,能够准确检测 系统内部大部分问题,确保故障被及时发现并处理。 在设计方面, SIS 系统也有着强大的灵活性, 采用冗 余逻辑表决技术,集成了输入、逻辑处理与输出三个 主要组件。尤其是可编程类型的 SIS, 其应用程序易 于调整,可根据工程需求灵活变更软件配置,实现定 制化的安全策略。SIS注重传感器到执行器之间的完 整路径安全, 配备了完善的 I/O 断线、短路等异常状 况监测机制,确保数据传输与执行环节的安全性 [3]。 为了保证安全标准的统一与有效性, SIS 系统在研发 之初就严格遵照国际认可的安全规范, 经过权威第三 方机构的严格审查与认证,只有获得相应资质,才能 正式应用于实际场景中。

2 SIS 系统在油气管道站场中的应用

油气管道站场的覆盖面广,设备设施布局较为分散,需要监测的指标主要包含压力、温度、流速及液位等方面,可采用专用检测器件直接获取,无需额外借助化工领域的辅助手段。相比化工厂的高密度控制,油气管道站场的控制回路较少,通常围绕压力、变频控制展开,更注重效率与稳定。例如,化工行业中制氧车间的控制回路数量可达两千以上,其参数收集与调控方式繁复,且对保护标准有着极高要求,一般在

中国化工贸易 2025 年 1 月 -165-

表1安全完整性等级

标准	ISA-S84.01	IEC61508	DIN V19520(TÜV)	PFD	说明
安全等级	SIL.1	SIL.1	AK1	10 ⁻¹ ~10 ⁻²	仅对少量的财产和简单的生产和产品进行保护
			AK2		
			AK3		
	SIL.2	SIL.2	AK4	10 ⁻² ~10 ⁻³	对大量的财产和复杂的生产和产品进行保护
	SIL.3	SIL.3	AK5	10 ⁻³ ~10 ⁻⁴	对工厂的财产、全体员工的生命和整个社区的安全进行保护
			AK6		
		SIL.4	AK7	10-4~10-5	避免灾难性(例如核事故)会对整个社区形成巨大冲击的事故
			AK8		

设计初期即确定安全完整性等级(SIL)为二级[4]。相 比之下,管道站点通常包含八个PID(比例-积分-微分)控制回路,主要采用压力、变频单向或双向调 节等方式,操作较简单。而在整个运输过程中,主要 需要监测管道压力的变化,避免泄漏、超压等安全隐 患。参照 SIL 等级列表(如表 1),结合输油管线的 构造特色、运营属性及设计分析,将其安全完整性等 级定位为一级,此等级更能贴合管道的设计、运维及 检修的实际需求, 既确保了必要的安全保障, 又兼顾 了经济合理性和操作便利性[5]。

3 油气管道站场 SIS 系统的设置

3.1 总体原则

油气管道站场中,安全仪表系统(SIS)的合理设 置至关重要,它直接关乎到站场的整体安全性能与运 营效率。设置 SIS 系统时, 首先需针对油气管道站场 这一应用场景展开危险与可操作性分析(HAZOP), 明确其潜在风险与可能发生的事故情景,并根据分析 结果确定安全仪表功能(SIF)各回路所对应的最低 SIL 等级。基于 SIL 分级结果进行 SIF 回路设计,包 括传感器的选择、逻辑控制单元的配置以及执行机构 的选定,确保整个 SIS 系统的 SIL 评级至少匹配最高 的 SIF 回路需求。

同时,油气管道站场 SIS 系统设置中还要遵循以 下原则:

- ①在监测到预设临界状态时, SIS 应立即介入行 动,引导受控进程进入预先定义的安全状况;
- ② SIS 设计须采取故障安全构架, 一旦执行安全 功能,除非经过人为确认重置,否则不应自动重启或 恢复运行:

- ③需配备与 SIL 等级相适应的故障诊断能力, 涵 盖从发现、记录到解决的全过程;
- ④诊断范畴应覆盖整个系统,包括信号感知组件、 逻辑处理中心与动作执行部件在内的所有模块;
- ⑤在进行诸如打印输出、程序调整或界面展示等 活动时,系统仍需保持实时数据采集与控制指令传输 的功能不间断 [6]。

3.2 传感器设置

对于 SIL2 级别的 SIS 系统, 其传感器需独立配置, 特别是在油气管道站场内涉及爆炸风险区域、官选择 具备防爆特性的型号。根据 IEC 61511 国际标准指导 下的选型规范, 传感器连线与装配过程中, 需采取有 效措施防止信号失真,例如引入安全栅隔离、电缆屏 蔽处理等,适当时增设多重传感器布局,以增加容错 空间,从而增强系统的稳健性与持久服务力。传感器 单元需具备自我监控与故障自检功能, 能够捕捉并传 达状态反馈及诊断提示,同时还应内置特定故障安全 属性,譬如非零最小输出信号、断电自动回撤至安全 状态等功能。考虑到工艺装置核心区域的检测元件乃 SIS 体系的关键构成,设计阶段要高度重视检测元件 的品质与耐用性,确保其在各种恶劣条件下稳定无误 地运作。

3.3 逻辑控制器设置

设置 SIS 系统时, 其控制单元需选用获得 SIL 认 证的可编程逻辑控制器(PLC)或是专门的安全控制器。 例如,多数油气管道站场的 SIS 系统按 SIL2 标准构建, 其逻辑控制器及其附属的硬件、软件与通信网络,都 必须经由权威机构验证,确保符合 SIL2 安全完整性要 求,才能有效构筑起高度可靠且具故障安全保障的体

-166-2025年1月 中国化工贸易 系。控制器硬件应采用模组式架构,便于后续扩展与功能强化,其中心控制模块则依托先进处理器技术打造,以支撑复杂的运算与决策需求。这种配置不仅保证了系统的基础稳定性,也为未来的升级留足空间,符合现代化工业自动化控制的发展趋势。

3.4 执行机构设置

油气管道站场的 SIS 系统执行机构的主要构件为 切断阀,可在出现异常情况时快速切断油气输送,隔 离故障部位,其驱动方式主要包含气动、气液复合及 电力驱动三类。各类驱动模式均可胜任安全指令的实 施,不过,执行器件还需达到一定的技术规格。以气 动型为例,当作为故障安全型执行器使用时,可选用 气动单效应回归型或配储气罐的结构,以确保存储足 够的能量来关闭阀门,在出现异常情况时实现即时密 封。此外,此类执行机构需要获取相应的 SIL 资格认证, 证实其在紧急状态下可靠关闭的能力,符合安全完整 性等级的标准要求。

3.5 集成与接口管理

完成 SIS 系统设置后,需将 SIS 与现有的 PCS 系统、 火灾气体探测系统 (FGS)等其他安全相关系统集成, 建立有效的信息交换通道,保证各系统间的高效协作。 此外,还需制定详细的维护计划,定期检查系统健康 状况,及时更换老化或损坏的部件,保持系统处于最 佳工作状态,同时预留足够的备件,以便快速应对突 发事件。

3.6 注意事项

在化工及煤化工领域中,SIS 系统的应用日渐广泛,其技术也日益成熟,但不同应用场景下的监测需求不同,站场作业与化工生产的控制特征有着显著差异,在设置 SIS 系统时,要避免盲目照搬化工及煤化工生产中的 SIS 设计理念,否则容易造成油气站场 SIS 系统的功能失衡,既不利于安全生产,也不利于资源的有效配置。

例如,过分强调提升 SIS 的功能安全等级,而忽略了系统的可用性需求,因忽视设备的正常运转率与维护便捷性,反而影响了日常操作的流畅度与长期稳定性;或是设计中过于注重控制器组件的选择与配置,轻视了现场测量仪器和执行机构的设计选型,导致前端感知与末端执行环节的性能匹配不佳,无法有效地将控制命令转化为具体行动,从而削弱了整体系统的效果与响应速度。

又如,在设置 SIS 系统时,只注重系统自身的功

能特性,过分重视硬件配置,而忽略安全生命周期各个阶段的工作,如前期的 HAZOP 分析、安全需求规格书(SRS)以及后期的运作维护规程,均会增加系统风险。设置 SIS 系统时必须认识到,系统的失效隐患并非仅来源于硬件与软件的内在缺陷,更可能源自设计疏漏与管理体系的不健全。因此,保证 SIS 效能的关键在于整合各个环节的力量,确保从规划、实施到维保全过程的精细化管理,同时加强人员培训与资质评估,实现软硬兼施、内外兼顾的全方位安全保障体系。

4 油气管道站场 SIS 系统的经济性分析

油气管道站场 SIS 系统的经济性分析主要可从成本和经济效益方面展开,评估其总成本与收益比,确保安全投入的价值最大化。SIS 系统应用成本主要包含硬件采购、系统设计、软件许可、网络搭建、集成调试等初始投资以及后期功能检查、参数校准、备件更换、技术升级、故障维修等运行维护成本。而经济效益方面,SIS 系统无法为油气管道站场直接创造经济价值,但可有效预防故障发生,减少意外停工时间,维持油气管道站场的连续稳定运行,降低故障造成的物料损失、维修费用、违规罚金、声誉损失等,具有较高的潜在经济效益。

在进行安全仪表回路的设计与选型时,应全面考虑测量单元、逻辑控制单元及执行单元三大核心组件,确保三者间高度协同,同时将设计贯穿于整个安全生命周期,详细考虑各阶段的设计规划、工程实施,直至最终的操作与维护,实现全程参与与深度融入。在选型设计时,要在满足功能安全等级的基础上寻找最佳平衡点,既确保系统的必要防护水平,也防止不必要的过度设计。过度设计虽能短期内提供更高层次的安全冗余,却可能伴随高昂的成本代价,包括初始投资、运行能耗及维护费用的增加。因此,理想的设计方案应在保证功能安全性的前提下,追求性价比最大化,避免资源浪费,实现经济与安全效益的双重优化。

在油气管道站场环境下,SIS 系统的设置与应用,将涉及到工艺系统、仪表系统、通信设施、电力自动化系统等多个子模块,并提出更为严苛的技术标准,导致初期投资额度增加。相较于独立配置一套专门的SIS 系统,采用集成化的策略,即将原有各项保护措施与工艺系统、过程控制紧密融合,能够避免重复建设,降低运维复杂度。根据油气管道压力保护特点,可采用 SIS 系统与 PCS 系统整合的策略,做好压力控

中国化工贸易 2025 年 1 月 -167-

制和超压保护系统设计,辅以工艺优化、应急机制、安全管理等综合措施,通过深度融合各方面优势,形成互补效应,规避单一行业规范的局限。一方面,可以有效避免因"过保护"引发的问题;另一方面,系统架构的优化重组有利于强化运营效率,减少维护负担,从而在保证安全的前提下,提升整体的可靠性和成本效益。

5 结语

SIS 系统在化工等行业的应用日益广泛,同时也推动了输油管道站场安全体系的优化升级。在油气管道站场环境下,设置 SIS 系统时需考虑其需求与特点合理进行设置,提高检测元件选型要求,明确控制部件、执行部件的安全完整性等级,在设计初期至后续运维全过程,深化危险与可操作性研究,并做好维护管理,确保 SIS 效能的充分发挥。

参考文献:

[1] 刁宇,李秋娟,刘朝阳,等.油气管道安全仪表系统

检验测试方法 Ⅲ. 油气储运,2024,43(08):144-151.

- [2] 朱云飞,张硕.安全仪表系统提升油气管道装置安全性探析[]]. 中国设备工程,2021(08):101-102.
- [3] 王文, 金天保, 祖明栋. 基于 LOAP 分析油气管道 站场 SIL 评级的研究 [J]. 中国石油和化工标准与质量,2022,42(21):3-5.
- [4] 焦春锋. 安全仪表系统在输油气管道中的应用 [J]. 化工管理,2019(17):59.
- [5] 张冠宇. 天然气管道站场安全仪表系统的设计与实现 [[]. 自动化博览,2020,37(12):82-86.
- [6] 付超, 陈晓, 朱凯云. 安全仪表系统在天然气管道压气站中的应用分析[J]. 中国石油和化工标准与质量,2021,41(18):111-112.

作者简介:

王凯 (1988-), 男, 汉族, 山东泰安人, 本科, 工程师, 研究方向: 仪表控制系统管理。

-168- 2025 年 1 月 **中国化工贸易**