基于数据驱动的油气藏动态开发参数优化与经济效益分析

许雨桐(中国石化胜利油田分公司勘探开发研究院,山东 东营 257015)

摘 要: 本文旨在探索基于数据驱动的油气藏动态开发参数优化与经济效益。文章提出了基于数据驱动的 油气藏动态开发参数优化技术框架,并针对该技术进行了经济效益分析。研究表明,基于数据驱动的动态开发 参数优化技术可以通过精细化储层管理和动态调整,显著提高采收率,降低运营成本,可以帮助企业有效应对 市场波动风险,为油气企业带来巨大的经济效益,为行业的可持续发展提供重要保障。

关键词:数据驱动;油气藏;动态开发;参数优化;经济效益

0 引言

在油气藏开发过程中, 传统的动态开发参数优化 方法往往存在显著的经济局限性。传统方法依赖于大 量的经验判断和复杂的数值模拟,通常未能充分利用 实际生产中的海量数据, 优化结果可能缺乏经济上的 全面性和针对性,加之复杂地质条件和不确定性的影 响,经常导致传统参数优化方法缺乏时效性和精准性 [1]。针对传统方法的这些经济瓶颈,数据驱动技术的 引入为油气藏动态开发参数优化带来了全新的解决方 案。

1 基于数据驱动的油气藏动态开发参数优化技术

油气藏动态开发的目标在干通过科学的参数优 化,实现资源的高效利用和经济效益的提升。基于 数据驱动的优化技术以大量历史和实时生产数据为基 础,利用数据挖掘和建模技术,动态调整开发参数以 适应复杂储层条件和生产需求。

1.1 数据挖掘与处理

油气藏开发过程中产生的大量数据包含地质特 征、注采动态、生产参数等信息。这些数据需要通过 系统化的处理和分析,为后续优化提供科学依据。

1.1.1 数据清洗与一致性处理

数据清洗工作需要针对原始数据中的噪声、异常 值和缺失数据进行系统性处理。清洗过程需要以明确 的算法规则为指导。例如,针对异常值的剔除,可以 使用基于上下四分位数的箱形图方法,标记超出合理 范围的离群值,并替换为符合逻辑的值。对于缺失数 据的修复,常用均值填补和线性插值算法;在数据特 性复杂时, 机器学习方法(如 K-近邻算法或深度填 补网络)能够提供更为精准的修复效果。

数据一致性处理需要全面考量单位、量纲的统一 性和数据记录格式的标准化。例如, 储层压力可能以 兆帕或磅每平方英寸记录,需要根据项目需求进行统

一换算,以确保不同数据源之间的比较和融合具有科 学性和一致性。

1.1.2 关键特征提取与降维

高维数据的处理需要通过特征提取与降维技术降 低模型复杂性,同时保留关键影响因素。特征提取过 程需要根据油气藏开发的物理和工程背景,明确哪些 特征对开发效果有直接影响。主成分分析(PCA)是 一种常用方法,通过计算变量的方差贡献率提取主要 成分。例如, 在处理储层数据时, 储层孔隙度、渗透 率和压力梯度通常是关键特征。独立成分分析(ICA) 则通过最大化非高斯性提取独立信号,适用于混合信 号数据的分离, 例如从生产动态数据中分离注水引起 的压力变化和天然流体驱动效应。降维技术的应用需 要在保留关键信息的同时尽量减少冗余。例如,对于 含有多个相关性的参数集,可以利用相关矩阵识别高 度相关的变量,并通过合并这些变量的主成分来减少 输入数据的维度。此过程可以显著提升模型计算效率, 并减少由于多重共线性带来的优化误差。

1.1.3 数据相关性分析

数据相关性分析需要系统揭示开发参数之间的相 互作用及其对开发目标的影响。相关性分析的第一步 是计算变量之间的相关系数。例如,通过皮尔逊相关 系数可以量化注采比与采收率之间的线性关系。然而, 许多开发参数之间的关系可能具有非线性特征, 因此 需要采用更复杂的方法,例如基于互信息的相关性分 析,以捕捉复杂的非线性关系。针对储层压力与注采 比的关联性分析,回归模型是常用方法。例如,可以 使用多项式回归拟合两者之间的非线性关系。为了更 好地理解数据的分布特性,可以采用聚类算法(如 K 均值聚类)将数据划分为具有相似特征的子集。这样 的分组可以为后续优化模型构建提供更有针对性的特 性描述。

-49-2025 年 1 月 中国化工贸易

1.2 动态优化模型构建

动态优化模型是描述开发参数与目标函数之间关系的技术核心,是动态开发参数优化实施的指导依据。 基于油气藏的复杂储层特性和多目标需求,模型的构建需要涵盖预测模型、优化设计及验证校正三个关键环节,形成一个完整的优化技术体系。

1.2.1 预测模型的构建

预测模型的构建需要充分利用历史生产数据和实 时储层动态信息,建立精准反映参数与储层动态行为 之间关系的数学模型。其中,支持向量机(SVM)模 型可通过核函数处理复杂的非线性关系,适合用于注 采比与采收率的关系建模。在构建模型时,需要以储 层参数(如渗透率、孔隙度等)和生产参数(如注采比、 注水压力等)作为输入变量,将采收率作为输出变量 进行监督学习。随机森林模型则因其特有的特征选择 机制,可用于处理高维输入数据,同时对数据噪声具 有较强的鲁棒性。在训练过程中,需要通过交叉验证 调优超参数(如树的数量和最大深度),以提高模型 的预测精度。随机森林模型适合用于捕捉储层非均质 性对开发参数的复杂影响。长短期记忆网络(LSTM) 则因其对时间序列数据的处理能力,被广泛用于预测 储层压力的动态变化。构建 LSTM 模型时,需要将时 间序列分为多个窗口,每个窗口内的压力变化作为模 型输入,通过回溯时间点捕捉历史压力变化对未来趋 势的影响。为了提高模型的预测能力,需要通过增大 网络层数或引入正则化方法减少过拟合现象。

1.2.2 多目标优化模型的设计

多目标优化模型的设计需要明确目标函数和约束条件,以解决油气藏开发中的资源利用与经济效益的综合优化问题。目标函数设计需要反映采收率最大化、能耗最小化和经济效益最大化等多重需求。对于目标函数的表达,可以采用权重法,将多个目标合并为一个综合目标。例如,目标函数可以设定为"注水量与产量之间的比值最优,同时成本最低"。约束条件的设定需结合实际储层特性和设备能力。例如,在储层保护的背景下,必须设置储层压力的最低阈值,以避免压力过低导致的储层损害。同时,注采比的限制需要满足技术合理性与经济性的平衡。通过线性约束表达式,限制注采比的取值范围为一个合理区间。此外,还需将设备的运行能力作为约束条件之一,例如注水泵的最大压力或日注采能力。为了求解多目标优化问题,可以采用 Pareto 前沿分析方法,通过非支配排序

生成一系列候选解。每个候选解均表示在特定权重下目标函数的最优值,优化人员可以根据实际需求选择合适的开发策略。

1.3 动态优化实施与实时调控

动态优化实施与实时调控是油气藏动态开发参数 优化技术的核心环节,其目的是通过动态调整开发参 数,实现储层高效管理和经济效益最大化。该环节依 赖于实时监测系统、智能优化算法以及反馈机制的协 同作用。

1.3.1 实时监测系统的集成

实时监测系统在油气藏动态开发中用于获取储层 动态和生产参数的实时数据, 为参数优化提供关键的 基础数据。油气藏动态开发的复杂性要求监测系统具 备高精度、广覆盖以及快速响应的能力。其中, 传感 器网络需要布置在储层关键区域,包括注水井和生产 井附近。传感器类型可以选择压力传感器、流量传感 器和温度传感器等,以全面监测储层压力、注采比、 井底流压、产量等动态参数。传感器安装需要结合储 层地质模型,确定关键数据采集点,例如裂缝分布密 集区或渗透率较低的区域。数据采集后需要通过物联 网平台进行传输和处理。高频数据传输要求系统采用 低延迟的通信技术,例如基于 LoRa 或 5G 网络的无线 通信。物联网平台需要实时接收和存储数据,并将其 传递至中央优化系统。传输数据的准确性需要通过校 正算法进行保障。例如,针对注采比数据中可能出现 的波动异常,可以利用卡尔曼滤波器对数据进行去噪 处理。实时监测系统还需具备数据融合能力,将多来 源的数据整合为一个完整的动态数据集。例如,通过 将井下传感器数据与地震监测数据结合,系统可以更 精确地反映储层压力分布的变化, 为参数优化提供准 确的输入。

1.3.2 优化算法的应用

优化算法在动态参数调整中用于求解复杂的多目标优化问题。油气藏动态开发的优化目标包括采收率最大化、成本最低化和设备利用效率最大化等,智能优化算法在实现这些目标时发挥核心作用。其中,遗传算法可以通过模拟自然选择过程,可快速搜索注采比和注水量的最优组合。在应用中,需要将开发参数编码为遗传算法的基因,例如用实数编码表示注采比。优化过程需要定义目标函数,例如"采收率与能耗的比值最大化"。通过交叉、变异和选择操作,遗传算法能够迭代优化开发参数,逐步逼近全局最优解。粒

-50- 2025 年 1 月 **中国化工贸易**

子群优化算法可以通过模拟粒子群的协作行为,适合 解决多目标优化问题。例如, 粒子位置可以表示储层 压力和注采比的组合状态, 粒子速度表示参数的调整 速率。算法需要动态更新粒子的位置信息,以满足采收 率和注水能耗的综合优化需求。差分进化算法在高维参 数空间的优化中具有显著优势。对于复杂储层开发问 题,例如优化多井注采的协调关系,差分进化算法能够 通过差分算子在解空间中生成新解,从而实现更高效的 参数搜索和调整。算法的应用需要以目标函数为导向, 同时结合约束条件限制搜索空间。例如,目标函数可以 设定为"储层压力维持在合理范围内的同时实现最高采 收率",约束条件则可包括"注水压力不超过设备承载 能力"和"储层压力不低于设定阈值"。

1.3.3 优化参数的动态调整与反馈

动态调整与反馈机制在优化实施中用于将优化结 果与实际生产状况进行比对,并根据实时数据修正优 化策略。反馈机制需要结合储层实际变化和设备运行 状态,确保参数调整符合现场需求。参数动态调整的 核心在于实时更新注采策略。例如, 当监测系统检测 到某区域储层压力低于优化模型的预测值时, 系统需 要重新计算注水量并调整注采比,以恢复压力平衡。 这种调整需要通过在线模型运行完成,并根据实时数 据动态迭代优化结果。反馈机制需要通过偏差分析量 化优化模型的误差。偏差分析可以采用均方根误差 (RMSE)或平均绝对误差(MAE)计算实际数据与 优化预测值之间的差距。例如, 当产量低于模型预测 时,可以结合历史生产数据重新评估注水策略是否有 效。对于显著偏差的情况,系统需启动优化模型的动 态校正, 例如重新调整储层压力与注采比之间的参数 关系。反馈机制还需要引入强化学习算法,以通过历 史反馈数据优化未来调整策略。例如, 当某一注水策 略多次导致储层压力恢复缓慢时,系统可以通过学习 累积的失败经验, 调整优化目标函数的权重分配, 优 先考虑稳定储层压力的需求。

2 动态开发参数优化技术的经济效益分析

动态开发参数优化技术在提升油气藏开发效率的 同时,也显著改善了其经济效益。这种基于数据驱动 的优化技术通过资源高效利用、成本降低以及经济风 险控制, 为油气藏开发创造了显著的经济价值。

2.1 动态优化技术能够有效提升采收率,从而提高资 源利用率

通过实时调整注采比和优化生产节奏,储层的开

发过程更加精细化和科学化。例如,在储层压力较低 的区域, 优化后的注水策略可以避免因压力不足导致 的采收率下降,从而延长油气藏的生产周期并增加最 终可采储量。这种采收率的提升直接转化为产量增长, 为企业带来长期的经济回报。

2.2 优化技术在降低开发成本方面表现突出

传统开发方法由于缺乏动态调整能力,容易导致 资源浪费和设备损耗。例如,不合理的注采策略可能 增加无效注采能耗,而动态优化技术通过科学调整注 采参数,有效减少了这种浪费。此外,实时监测与动 态反馈机制的引入使得设备运行更加高效, 从而降低 设备维护成本和停机损失。这种成本优化不仅提高了 单井生产的经济性,也提升了油田整体的运营效率。

2.3 动态优化技术有助于企业应对油价波动的经济风

在油价高位运行时, 优化后的开发策略可以最大 化产量,而在油价低迷时,优化技术能够通过能耗最 小化的策略减少开采成本,从而在不同市场条件下维 持企业的盈利能力。同时,基于数据驱动的预测模型 和实时监测系统,可以帮助企业更准确地判断储层动 态和市场趋势,从而提前制定灵活的生产计划,规避 潜在的经济损失。

2.4 动态优化技术通过提升投资回报率,增强了企业 的市场竞争力

优化技术的实施减少了开发过程中的试错成本, 并通过模型预测和实时调控提升了生产效率。这种高 效的开发模式使得企业能够以更低的投入获得更高的 回报,从而提高资本利用效率。同时,通过强化储层 管理和设备优化,企业在行业中的运营优势得以巩固。

3 结语

油气藏动态开发参数优化技术是实现高效资源开 发与经济效益最大化的重要手段。这一技术通过充分 利用数据驱动的优化模型、实时监测系统和动态反馈 机制,不仅可以提升采收率和资源利用效率,还可以 显著降低开发成本和运营风险,在应对复杂储层条件、 提高企业市场竞争力以及支持可持续发展方面具有深 远意义。因此,进一步研究和推广这一技术,将为能 源行业的创新与发展提供重要战略支持。

参考文献:

[1] 郭建春,张宇.非常规油气储层智能压裂技术研究 进展与展望 []]. 天然气工业,2024,44(09):13-26.

-51-中国化工贸易 2025 年 1 月