柴油储罐安全防护技术分析

刘明东(无锡市恒信安全技术服务有限公司, 江苏 无锡 214000)

摘 要:柴油作为广泛使用的化学品,在储存和运输过程中容易出现泄漏、火灾爆炸等重大安全隐患,建立有效的安防技术体系是保障柴油储罐储存安全和减少环境污染的关键。本文旨在分析柴油储罐使用、储存的安全防护技术,首先分析柴油储罐潜在的危险有害因素,然后提出罐区安全控制技术,并分析了柴油储运过程的安全控制策略等。通过采取针对性的安防技术能够显著降低事故发生率,提升储罐的安全性和可靠性,对相关行业的安全管理和技术创新具有重要的指导意义。

关键词: 柴油储罐; 运行风险; 安全管理

0 引言

随着工业化进程的加速,柴油作为重要的化学品在各行业中得到广泛运用。柴油在运输和储存过程中容易发生安全事故,导致柴油泄漏、爆炸和火灾事故,严重威胁生命安全和环境质量^[1]。因此,加强柴油储罐的安全防护势在必行。本文主要分析储罐的潜在风险及防范措施,结合国内外的先进经验,提出切实可行的安全控制策略,以提高柴油储存的安全性,降低事故发生率,保证储罐运行安全。

1 项目概况

某公司生产、使用和储存化学品总共达 60 余种, 易燃易爆、腐蚀性的危险化学品有 20 余种,涉及监 控化学品、重点监管化学品、易制毒化学品等,同时 涉及爆炸危险性气体环境;使用设备包括导热油炉、 压缩空气储罐、叉车等特种设备,反应釜、砂磨机、 球磨机、柴油储罐等化工设备。为提升企业本质安全 水平,对其安全生产条件与安全管理情况进行现场检 查,采取技术、管理措施,及时发现并消除事故隐患, 保障安全生产。本文主要针对柴油储罐运行中可能出 现的安全隐患,提出有效的防护措施。包括对储罐的 结构、材料及运行环境进行全面评估,识别潜在的泄 漏、燃爆等危险;依据相关安全生产法律法规和标准, 采取安全防护措施,以保障公司和相邻单位人民生命 财产安全,降低事故发生率,促进整体安全管理水平 提高。

2 柴油储罐危险有害因素分析

为进一步提升安全管理水平,依据相关安全生产 法律法规、标准规范等,进行危险有害因素的辨识及 其危险度的评价,查找其中存在的事故隐患并判定其 后果严重程度,检查所配备的安全设施是否符合国家 有关安全生产的法律法规和技术标准,提出合理可行 的安全对策措施及建议。安全评价工作程序框图如图 1 所示。采用安全检查表的评价方法,从安全管理和 生产现场两个方面分析潜在的危险因素,依据有关法 规、标准规定,参考过去事故的教训和同行业的经验 确定安全检查表的检查要点、内容和为达到指标应在 生产应用中采取的措施。检查安全设施有效性、完好性, 识别潜在及确定安全风险,有效防范安全事故发生。

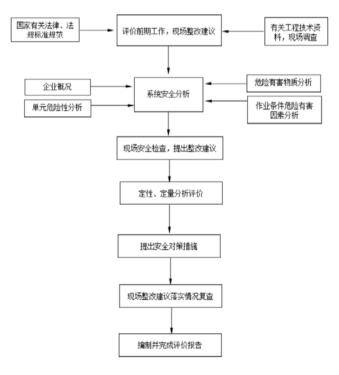


图 1 安全评价工作程序框图

通过运用危险、有害因素辨识的科学方法,对柴油储罐涉及的危险有害因素进行辨识和分析,确定其存在的部位、方式,以及发生作用的途径,对可能发生的事故的后果进行预测,提出安全对策措施^[2]。柴油是常见的易燃液体,在高温、静电或明火等情况下,可能引发火灾爆炸,储罐可能由于设备老化、管道破损、法兰垫片、

-166- 2025 年 1 月 **中国化工贸易**

阀门接口锈蚀或操作不当等原因导致柴油泄漏;储罐进料过程如果人员操作不当,未配备液位监测、液位高限报警联锁装置等安全设施,则可能发生满溢事故,此时若遇明火引发火灾、爆炸事故;装卸柴油时,槽车未采取防溜车措施、静电接地不良、充装软管与储槽接口未牢固对接、卸车过程中人员未坚守现场、卸车完毕后装卸接管未脱开车辆就启动等原因导致柴油泄露、发生火灾、爆炸事故;输送易燃液体的进料泵、出料泵如轴封不严发生泄漏,易燃液体挥发,与空气混合后形成爆炸性混合蒸气,遇热源和明火能引起燃烧爆炸。总之,根据物料储运的特点,其储运过程中可能存在火灾爆炸、触电、物体打击、机械伤害、车辆伤害等危险有害性,不仅会造成经济损失,还对人民生命财产安全和环境保护造成一定威胁。

3 柴油储罐安全控制技术

3.1 防泄漏

储罐防泄漏是确保环境安全和保护人员生命健康的关键,油罐如由不非专业制造厂家加工制造,则会因材质选用不当、焊接质量差、罐上各类附件配置不全、安装质量存在缺陷等原因致使油罐发生油品泄漏。因此,应选用满足耐腐蚀性与密封性标准的高质量储罐;定期进行设备检查,重点对连接管道、法兰、垫片、阀门和储罐本体展开无损检测;在现场采用泄漏监测系统,例如红外线传感器和液位监测报警器,及时发现异常情况;制定详细的泄漏应急处置方案,定期开展安全知识和技术培训和应急演练,确保员工在事故发生时,能够迅速有效地应对^[3]。

3.2 防火防爆

柴油储存和运行过程中,要严格遵循防火的基本 原则,合理规划罐区布局,确保储罐与周围设施保持 安全距离,避免因布局不合理导致的火灾蔓延。在设 备选型上,应选用防爆电气设备,确保在易燃易爆环 境下的安全操作。可燃气体浓度检测报警装置应与事 故通风装置联锁,可燃气体浓度大于报警限值时自动 开启通风装置。储罐进行检维修作业时对设备、管道 等按规定进行吹扫清洗置换、气体浓度分析等,罐区 工作人员要经常对消防设施、应急器材、通风设施、 气体监测仪器等情况进行检查,一旦发现存在问题或 缺陷要及时处理修复,防止事故后果扩大。

3.3 防静申.

静电积聚可能导致电火花,成为引发火灾和爆炸的点火源。因此,防静电在柴油罐区中同样至关重要,应确保每个储罐、管道、仪表等均采取了可靠有效的

接地措施,定期检查接地系统和防静电设施,定期对防雷(静电)接地装置检测,确保接地系统良好可靠。操作过程中,工作人员应穿戴防静电工作服、鞋,使用防静电工具,严格采取防静电措施。在卸车和输送柴油时,保证操作顺序正确,严格控制液体流速减少静电产生。

4 柴油储运过程中的安全控制策略

4.1 设备防腐处理

柴油储罐的防腐处理直接关系到罐区的安全性、 经济性和持久性,防腐手段应根据具体的环境和使用 条件选择。常见的防腐处理是涂层防护,即涂覆环氧 树脂涂料、聚氨酯涂料等防腐涂料,上述涂料具有良 好的附着力和耐腐蚀性,能够有效隔绝水分和氧气, 减缓设备表面的腐蚀过程。设备的防腐处理还包括对 金属部件的铝阳极化处理以及热喷涂技术。其中,铝 阳极化可在金属表面形成一层致密的铝氧化膜,增强 耐腐蚀性,热喷涂技术则可以通过将金属粉末或合金 材料加热后喷射到设备表面,形成致密的涂层,增强 耐磨、耐腐蚀及耐高温的能力。

4.2 储罐安全管理

虽然柴油闪点高于汽油,但也属于易燃液体,因 此,在检查柴油储罐时,应将重心放在储罐材质、结 构是否适配介质理化特性,储罐是否配有呼吸阀、量 油孔及人孔,通气管管径是否可以满足柴油注入储罐、 抽离储罐所呼出油气量以及吸入空气量, 通气管及阻 火器是否能够正常使用,管道阀门材质是否为钢质 等。确保储罐安全性的关键措施包括配备必要的安全 附件,其中,液位计和高液位报警装置必须定期进行 校验、检查,以保证其处于正常工作状态。此外,储 罐区应根据国家标准《石油化工可燃气体和有毒气体 检测报警设计标准》GB/T50493-2019 安装固定式可燃 气体浓度探测器,能够连续监测罐区、装卸场所的可 燃液体蒸气浓度。当可燃液体蒸气浓度达到或超过报 警设定值时,探测器发出声光警报并远传24小时有 人值守的值班室或控制室,以警示值班人员和操作人 员立即采取适当的安全处置和应急措施,从而防止事 故的发生。在罐区内进行作业时,必须遵循以下规定: 第一,在易燃易爆区域工作的人员在上岗期间应穿戴 防静电工作服和鞋子,严禁穿带铁钉的鞋。严禁在具 有爆炸危险的场所更换衣物、帽子或类似物品的行为, 严禁携带点火源和移动通信工具进入易燃易爆区域。 使用的工具和设备不得沾染异物且不能产生火花,操 作中应避免铁质发火工具的磨擦和撞击;第二,进入

中国化工贸易 2025 年 1 月 -167-

储罐区的人员应通过触摸人体静电释放装置导除人体静电,所有进入该区域的机动车辆必须有良好的接地措施、汽车尾气管安装阻火器,未经企业主管部门批准的机动车不得进入储罐区,在罐区 30m 范围内未经作业审批许可严禁动火作业;第三,罐区工作人员应定期对消防设备、管道、和应急装备器材等进行安全检查,一旦发现不能正常使用必须及时更换或修复;柴油储罐区的管理人员在下班前,必须执行防火和安全检查,只有在确认一切正常后才能离开岗位。

4.3 柴油储罐的检修与安全防护

储罐的检修与日常维护是确保设备正常运行的基础。应该针对储罐、管道、阀门等关键设备,建立详细的检查记录和管理制度,确保所有设备在安全可靠的状态下运行。根据现场情况确定清洗和维护周期,通过定期清洗,防止沉积物、污垢等对储罐造成腐蚀,延长设备的使用寿命。在物料储运方面,应实施严格的管理和控制措施,运输过程中,制定合理的装卸方案,避免柴油与其他化学品混合运输,减少因误操作导致的事故发生^[4]。此外,还要建立完善的应急预案,定期开展演练,增强员工的应急意识和处理能力,使员工能够在发生泄漏、火灾爆炸等突发事件时迅速反应,合理采取处置措施,防止事故影响范围扩大,降低事故后果损失。

4.4 罐区安全监测

为了确保柴油罐区的安全,需完善罐区安全监测 技术,加强对储罐实时状态的监测,使工作人员能够 迅速发现泄漏等隐患,降低事故风险。环境监测是基 础,应在罐区内安装气体监测仪器,实时监测可燃气 体及氧气浓度,确保空气质量和人员安全。设备状态 监测是保障罐区正常运行的重要环节,可以通过在储 罐或罐区安装液位、温度、风向监测装置,实时获取 设备、设施的运行数据,结合物联网技术,将数据上 传至监控平台,实现对设备的远程监控和分析。泄漏 监测也是安全监测的关键部分,在储罐罐体安装泄漏 监测系统,通过液体泄漏传感器实时检测储罐是否有 泄漏,及时报警以便于快速处置。此外,还可以在装 卸区设置防泄漏围堰,防止泄漏油品扩散至其他区域, 避免事故扩大和环境污染。事实证明, 采取全面的安 全监测措施,可以有效提高柴油罐区的安全运行水平, 降低事故发生率,确保人员生命和设备安全。

4.5 设备完整性管理

当设备缺陷或故障、人员操作不当发生危险物料

跑冒滴漏或容器内能量意外释放,从而发生安全事故, 因此设备装置投用后,在使用、维护、修理、报废等 各个环节中始终要保持设备满足设计要求、保持功能 完好、安全可靠运行。从设备的结构选型、制造材料、 使用或储存的介质、操作条件(温度、压力等)、自 然条件(气候、环境)、安全附件、安全监测等方面 对设备安全进行评估。设备完整性是一套用于确保设 备在生命周期内保持耐用性和功能性的管理体系 [5]。 设备完整性管理的重点是防止危险物料的灾难性泄漏 或能量的突然释放,以及保证关键安全系统和公用系 统的高可用性和高可靠性,以消除或减轻此类事故的 危害。设备完整性管理贯穿设备的设计、制造、购买、 安装、操作、维护、修理、报废整个生命周期。当设 备出现缺陷时,可以帮助员工识别缺陷并进行有效控 制,并优化资源的分配(人员、资金,储存空间等) 进行完善的管理使其不引发事故,同时确保执行检测、 测试、维护、购买、制作、安装、拆除和再安装设备 的相关人员受到良好的培训,并能准确执行这些作业 活动的操作规程。

5 总结

经过细致的现场勘察和分析,对柴油储罐进行全面的风险识别和评估,并采取一系列有效的、针对性安全防范措施,保证其在装卸、储存过程中的安全性。通过对柴油储罐所采取的安全防护技术进行分析,强化储罐的设备安全、完善泄漏监测系统、定期开展风险评估以及加强操作人员的培训是提升安防水平的关键。未来,需要进一步推广先进的安全管理理念和技术,确保人民生命财产与环境安全,推动行业的发展。参考文献:

- [1] 龙雪华,周娟.化工安全生产与管理探讨[J].中国石油和化工标准与质量,2024,44(03):20-22.
- [2] 王宗传,钱承君,缪明励.当前港口柴油存储的安全措施研究[]. 水上安全,2023,(08):139-141.
- [3] 刘继东. 大型石油罐区安全控制技术及其应用研究 []]. 造纸装备及材料,2022,51(02):127-128+197.
- [4] 刘义霖. 石油化工罐区投用实践与研究 [J]. 山东化工,2024,53(22):218-220.
- [5] 保元云, 崔丽萍. 化工设备管理中的难点及优化措施 [J]. 石化技术, 2024, 31(11): 303-305.

作者简介:

刘明东(1970-), 男, 汉族, 江苏无锡人, 本科, 工程师, 研究方向: 安全评价。

-168- 2025 年 1 月 **中国化工贸易**